Multivariate modeling of magnetic resonance biomarkers and clinical outcome measures for Duchenne muscular dystrophy clinical trials

被引:7
|
作者
Kim, Sarah [1 ,8 ]
Willcocks, Rebecca J. [2 ]
Daniels, Michael J. [3 ]
Morales, Juan Francisco [1 ]
Yoon, Deok Yong [1 ]
Triplett, William T. [2 ]
Barnard, Alison M. [2 ]
Conrado, Daniela J. [4 ]
Aggarwal, Varun [5 ]
Belfiore-Oshan, Ramona [5 ]
Martinez, Terina N. [5 ]
Walter, Glenn A. [6 ]
Rooney, William D. [7 ]
Vandenborne, Krista [2 ]
机构
[1] Univ Florida, Coll Pharm, Ctr Pharmacometr & Syst Pharmacol, Dept Pharmaceut, Orlando, FL USA
[2] Univ Florida, Dept Phys Therapy, Gainesville, FL USA
[3] Univ Florida, Dept Stat, Gainesville, FL USA
[4] E Quantify LLC, La Jolla, CA USA
[5] Crit Path Inst, Tucson, AZ USA
[6] Univ Florida, Dept Physiol & Aging, Gainesville, FL USA
[7] Oregon Hlth & Sci Univ, Adv Imaging Res Ctr, Portland, OR USA
[8] 6550 Sanger Rd,Off 471, Orlando, FL 32827 USA
来源
关键词
HANDLING DATA; MRI; QUANTIFICATION; QUALITY; GROWTH; LIMIT;
D O I
10.1002/psp4.13021
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Although regulatory agencies encourage inclusion of imaging biomarkers in clinical trials for Duchenne muscular dystrophy (DMD), industry receives minimal guidance on how to use these biomarkers most beneficially in trials. This study aims to identify the optimal use of muscle fat fraction biomarkers in DMD clinical trials through a quantitative disease-drug-trial modeling and simulation approach. We simultaneously developed two multivariate models quantifying the longitudinal associations between 6-minute walk distance (6MWD) and fat fraction measures from vastus lateralis and soleus muscles. We leveraged the longitudinal individual-level data collected for 10 years through the ImagingDMD study. Age of the individuals at assessment was chosen as the time metric. After the longitudinal dynamic of each measure was modeled separately, the selected univariate models were combined using correlation parameters. Covariates, including baseline scores of the measures and steroid use, were assessed using the full model approach. The nonlinear mixed-effects modeling was performed in Monolix. The final models showed reasonable precision of the parameter estimates. Simulation-based diagnostics and fivefold cross-validation further showed the model's adequacy. The multivariate models will guide drug developers on using fat fraction assessment most efficiently using available data, including the widely used 6MWD. The models will provide valuable information about how individual characteristics alter disease trajectories. We will extend the multivariate models to incorporate trial design parameters and hypothetical drug effects to inform better clinical trial designs through simulation, which will facilitate the design of clinical trials that are both more inclusive and more conclusive using fat fraction biomarkers.
引用
收藏
页码:1437 / 1449
页数:13
相关论文
共 50 条
  • [1] Clinical importance of changes in magnetic resonance biomarkers for Duchenne muscular dystrophy
    Willcocks, Rebecca J.
    Barnard, Alison M.
    Daniels, Michael J.
    Forbes, Sean C.
    Triplett, William T.
    Brandsema, John F.
    Finanger, Erika L.
    Rooney, William D.
    Kim, Sarah
    Wang, Dah-Jyuu
    Lott, Donovan J.
    Senesac, Claudia R.
    Walter, Glenn A.
    Sweeney, H. Lee
    Vandenborne, Krista
    ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2024, 11 (01): : 67 - 78
  • [2] Reliable surrogate outcome measures in multicenter clinical trials of duchenne muscular dystrophy
    Mayhew, Jill E.
    Florence, Julaine M.
    Mayhew, Thomas P.
    Henricson, Erik K.
    Leshner, Robert T.
    McCarter, Robert J.
    Escolar, Diana M.
    MUSCLE & NERVE, 2007, 35 (01) : 36 - 42
  • [3] Outcome measures in Duchenne muscular dystrophy: sensitivity to change, clinical meaningfulness, and implications for clinical trials
    Domingos, Joana
    Muntoni, Francesco
    DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2018, 60 (02): : 117 - 117
  • [4] Therapeutic opportunities and clinical outcome measures in Duchenne muscular dystrophy
    Ricci, Giulia
    Bello, Luca
    Torri, Francesca
    Schirinzi, Erika
    Pegoraro, Elena
    Siciliano, Gabriele
    NEUROLOGICAL SCIENCES, 2022, 43 (Suppl 2) : 625 - 633
  • [5] Therapeutic opportunities and clinical outcome measures in Duchenne muscular dystrophy
    Giulia Ricci
    Luca Bello
    Francesca Torri
    Erika Schirinzi
    Elena Pegoraro
    Gabriele Siciliano
    Neurological Sciences, 2022, 43 : 625 - 633
  • [6] Outcome Measures in Facioscapulohumeral Muscular Dystrophy Clinical Trials
    Ghasemi, Mehdi
    Emerson, Charles P., Jr.
    Hayward, Lawrence J.
    CELLS, 2022, 11 (04)
  • [7] OUTCOME MEASURES FOR DUCHENNE MUSCULAR DYSTROPHY: IMPLICATIONS FOR TRIALS
    Domingos, Joana
    Eagle, Michelle
    Moraux, Amelie
    Butler, Jordan
    Decostre, Valerie
    Ridout, Deborah
    Mayhew, Anna
    Selby, Victoria
    Guglieri, Michela
    Van der Holst, Menno
    Jansen, Merel
    Verschuuren, Jan G. M.
    de Groot, Imelda
    Niks, Erik
    Servais, Laurent
    Hogrel, Jean-Yves
    Straub, Volker
    Voit, Thomas
    Ricotti, Valeria
    Muntoni, Francesco
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2017, 88 : A63 - A63
  • [8] Promoting meaningful clinical trial outcome measures for Duchenne muscular dystrophy
    Peav, H.
    Kennedy, A.
    Fischer, R.
    Bronson, A.
    Furlong, P.
    NEUROMUSCULAR DISORDERS, 2016, 26 : S187 - S187
  • [9] Dystrophin as a biochemical outcome measure in Duchenne muscular dystrophy clinical trials
    Sardone, V.
    Ellis, M.
    Torelli, S.
    Feng, L.
    Chambers, D.
    Ricotti, V.
    Domingos, J. Pisco
    Phadke, R.
    Sewry, C. A.
    Morgan, J.
    Muntoni, F.
    NEUROMUSCULAR DISORDERS, 2016, 26 : S16 - S16
  • [10] Development of clinical trial simulation tools for Duchenne muscular dystrophy using magnetic resonance biomarkers
    Vandenborne, K.
    Kim, S.
    Willcocks, R.
    Morales, J.
    Lingineni, K.
    Barnard, A.
    Schmidt, S.
    Daniels, M.
    Triplett, W.
    Larkindale, J.
    Walter, G.
    Rooney, W.
    NEUROMUSCULAR DISORDERS, 2020, 30 : S93 - S94