Continuum limit of the lattice Lohe group model and emergent dynamics

被引:2
|
作者
Cho, Hangjun [1 ]
Ha, Seung-Yeal [2 ]
Kang, Myeongju [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
continuum limit; Kuramoto model; lattice Lohe group model; Lohe group; scaling limit; PHASE-LOCKED STATES; KURAMOTO MODEL; ORBITAL STABILITY; SYNCHRONIZATION; POPULATIONS;
D O I
10.1002/mma.9086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the emergent dynamics and global well-posedness of the matrix-valued integro-differential equation which can be derived from the continuum limit of the lattice Lohe group model. The lattice Lohe group model corresponds to the generalized high-dimensional Kuramoto model. The solution to the lattice Lohe group model can be cast as a simple function-valued solution to the continuum Lohe group model. We first construct a local classical solution to the continuum Lohe group model, and then we find an invariant set and derive a global well-posedness in some sufficient frameworks formulated in terms of initial data, system functions, and system parameters. We also show that phase-locked states can emerge from the admissible class of initial data in a large coupling regime. Moreover, we show that sequence of simple functions obtained from the solutions of the lattice Lohe group model converges to a local classical solution to the continuum Lohe group model in supremum norm.
引用
收藏
页码:9783 / 9818
页数:36
相关论文
共 50 条
  • [1] A Mean-Field Limit of the Lohe Matrix Model and Emergent Dynamics
    Golse, Francois
    Ha, Seung-Yeal
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 234 (03) : 1445 - 1491
  • [2] A Mean-Field Limit of the Lohe Matrix Model and Emergent Dynamics
    François Golse
    Seung-Yeal Ha
    Archive for Rational Mechanics and Analysis, 2019, 234 : 1445 - 1491
  • [3] UNIFORM-IN-TIME CONTINUUM LIMIT OF THE LATTICE WINFREE MODEL AND EMERGENT DYNAMICS
    Ha, Seung-Yeal
    Kang, Myeongju
    Moon, Bora
    KINETIC AND RELATED MODELS, 2021, 14 (06) : 1003 - 1033
  • [4] From the Lohe Tensor Model to the Lohe Hermitian Sphere Model and Emergent Dynamics
    Ha, Seung-Yeal
    Park, Hansol
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (02): : 1312 - 1342
  • [5] Emergent dynamics of the Lohe Hermitian sphere model with frustration
    Ha, Seung-Yeal
    Kang, Myeongju
    Park, Hansol
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
  • [6] Existence and Emergent Dynamics of Quadratically Separable States to the Lohe Tensor Model
    Ha, Seung-Yeal
    Kim, Dohyun
    Park, Hansol
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2022, 21 (02): : 1166 - 1208
  • [7] Emergent Dynamics of a Generalized Lohe Model on Some Class of Lie Groups
    Seung-Yeal Ha
    Dongnam Ko
    Seung-Yeon Ryoo
    Journal of Statistical Physics, 2017, 168 : 171 - 207
  • [8] Emergent Dynamics of a Generalized Lohe Model on Some Class of Lie Groups
    Ha, Seung-Yeal
    Ko, Dongnam
    Ryoo, Sang Woo
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (01) : 171 - 207
  • [9] THE WIGNER-LOHE MODEL FOR QUANTUM SYNCHRONIZATION AND ITS EMERGENT DYNAMICS
    Antonelli, Paolo
    Ha, Seung-Yeal
    Kim, Dohyun
    Marcati, Pierangelo
    NETWORKS AND HETEROGENEOUS MEDIA, 2017, 12 (03) : 403 - 416
  • [10] Emergent Behavior of a Second-Order Lohe Matrix Model on the Unitary Group
    Ha, Seung-Yeal
    Kim, Dohyun
    JOURNAL OF STATISTICAL PHYSICS, 2019, 175 (05) : 904 - 931