AN ASYMPTOTIC THEORY FOR JUMP DIFFUSION MODELS

被引:0
|
作者
Jeong, Minsoo [1 ]
Park, Joon Y. [2 ,3 ]
机构
[1] Yonsei Univ, Seoul, South Korea
[2] Indiana Univ, Bloomington, IN USA
[3] Indiana Univ, Dept Econ, Bloomington, IN 47405 USA
基金
新加坡国家研究基金会;
关键词
INVARIANT MEASURE; LIMIT-THEOREMS;
D O I
10.1017/S0266466624000069
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents an asymptotic theory for recurrent jump diffusion models with well-defined scale functions. The class of such models is broad, including general nonstationary as well as stationary jump diffusions with state-dependent jump sizes and intensities. The asymptotics for recurrent jump diffusion models with scale functions are largely comparable to the asymptotics for the corresponding diffusion models without jumps. For stationary jump diffusions, our asymptotics yield the usual law of large numbers and the standard central limit theory with normal limit distributions. The asymptotics for nonstationary jump diffusions, on the other hand, are nonstandard and the limit distributions are given as generalized diffusion processes.
引用
收藏
页数:63
相关论文
共 50 条
  • [1] Asymptotic behaviors of stochastic epidemic models with jump-diffusion
    Nguyen Thanh Dieu
    Fugo, Takasu
    Nguyen Huu Du
    APPLIED MATHEMATICAL MODELLING, 2020, 86 : 259 - 270
  • [2] Testing for the presence of jump components in jump diffusion models
    Wang, Bin
    Zheng, Xu
    JOURNAL OF ECONOMETRICS, 2022, 230 (02) : 483 - 509
  • [3] A NEW ASYMPTOTIC DIFFUSION THEORY
    POMRANING, GC
    CLARK, M
    NUCLEAR SCIENCE AND ENGINEERING, 1963, 17 (02) : 227 - &
  • [4] AVERAGE OPTIONS FOR JUMP DIFFUSION MODELS
    Kunita, Hiroshi
    Yamada, Takuya
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2010, 27 (02) : 143 - 166
  • [5] Nonparametric estimation of jump diffusion models
    Park, Joon Y.
    Wang, Bin
    JOURNAL OF ECONOMETRICS, 2021, 222 (01) : 688 - 715
  • [6] DECOMPOSITION FORMULA FOR JUMP DIFFUSION MODELS
    Merino, R.
    Pospisil, J.
    Sobotka, T.
    Vives, J.
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2018, 21 (08)
  • [7] Asymptotic expansion of a nonlinear oscillator with a jump-diffusion process
    Ishikawa, Yasushi
    Yamanobe, Takanobu
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (02) : 969 - 1004
  • [8] Asymptotic expansion of a nonlinear oscillator with a jump-diffusion process
    Yasushi Ishikawa
    Takanobu Yamanobe
    Japan Journal of Industrial and Applied Mathematics, 2018, 35 : 969 - 1004
  • [9] ASYMPTOTIC EQUIVALENCE FOR INHOMOGENEOUS JUMP DIFFUSION PROCESSES AND WHITE NOISE
    Mariucci, Ester
    ESAIM-PROBABILITY AND STATISTICS, 2015, 19 : 560 - 577
  • [10] Asymptotic Behaviors of Projected Stochastic Approximation: A Jump Diffusion Perspective
    Liang, Jiadong
    Han, Yuze
    Li, Xiang
    Zhang, Zhihua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,