MCoCo: Multi-level Consistency Collaborative multi-view clustering

被引:11
|
作者
Zhou, Yiyang [1 ]
Zheng, Qinghai [2 ]
Wang, Yifei [1 ]
Yan, Wenbiao [1 ]
Shi, Pengcheng [1 ]
Zhu, Jihua [1 ]
机构
[1] Jiaotong Univ, Sch Software Engn, Xian 710049, Peoples R China
[2] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
关键词
Multi-view clustering; Consistency collaborative; Semantic consensus information; REPRESENTATION;
D O I
10.1016/j.eswa.2023.121976
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering can explore consistent information from different views to guide clustering. Most existing works focus on pursuing shallow consistency in the feature space and integrating the information of multiple views into a unified representation for clustering. These methods did not fully consider and explore the consistency in the semantic space. To address this issue, we proposed a novel Multi-level Consistency Collaborative learning framework (MCoCo) for multi-view clustering. Specifically, MCoCo jointly learns cluster assignments of multiple views in feature space and aligns semantic labels of different views in semantic space by contrastive learning. Further, we designed a multi-level consistency collaboration strategy, which utilizes the consistent information of semantic space as a self-supervised signal to collaborate with the cluster assignments in feature space. Thus, different levels of spaces collaborate with each other while achieving their own consistency goals, which makes MCoCo fully mine the consistent information of different views without fusion. Compared with state-of-the-art methods, extensive experiments demonstrate the effectiveness and superiority of our method. Our code is released on https://github.com/YiyangZhou/MCoCo.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multi-level Feature Learning for Contrastive Multi-view Clustering
    Xu, Jie
    Tang, Huayi
    Ren, Yazhou
    Peng, Liang
    Zhu, Xiaofeng
    He, Lifang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16030 - 16039
  • [2] Collaborative Multi-View Clustering
    Ghassany, Mohamad
    Grozavu, Nistor
    Bennani, Younes
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [3] Multi-layer multi-level comprehensive learning for deep multi-view clustering
    Chen, Zhe
    Wu, Xiao-Jun
    Xu, Tianyang
    Li, Hui
    Kittler, Josef
    INFORMATION FUSION, 2025, 116
  • [4] Joint Multi-View Collaborative Clustering
    Khalafaoui, Yasser
    Matei, Basarab
    Grozavu, Nistor
    Lovisetto, Martino
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [5] Collaborative PLSA for Multi-View Clustering
    Jiang, Yu
    Liu, Jing
    Li, Zechao
    Lu, Hanqing
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2997 - 3000
  • [6] Contrastive and adversarial regularized multi-level representation learning for incomplete multi-view clustering
    Wang, Haiyue
    Zhang, Wensheng
    Ma, Xiaoke
    NEURAL NETWORKS, 2024, 172
  • [7] Deep Incomplete Multi-view Clustering via Multi-level Imputation and Contrastive Alignment
    Wang, Ziyu
    Du, Yiming
    Wang, Yao
    Ning, Rui
    Li, Lusi
    NEURAL NETWORKS, 2025, 181
  • [8] Multi-view Clustering Based on Collaborative Reconstruction
    Zhou, Kailing
    Jia, Hong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14875 : 315 - 327
  • [9] Topological multi-view clustering for collaborative filtering
    Falih, Issam
    Grozavu, Nistor
    Kanawati, Rushed
    Bennani, Younes
    INNS CONFERENCE ON BIG DATA AND DEEP LEARNING, 2018, 144 : 306 - 312
  • [10] Generalized Multi-View Collaborative Subspace Clustering
    Lan, Mengcheng
    Meng, Min
    Yu, Jun
    Wu, Jigang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3561 - 3574