In this paper we propose a simple axiom which, along with the axioms of additivity (transfer) and dummy player, characterizes the Shapley value (the Shapley-Shubik power index) on the domain of TU (simple) games. The new axiom, cross invariance, demands payoff invariance on symmetric players across "quasi-symmetric games," that is, games where excluding null players, all players are symmetric. Additionally, we demonstrate that the axiom of additivity can be replaced by a new axiom called strong monotonicity, or it can be completely dropped if a stronger version of cross invariance is employed. We also show that the weighted Shapley values can be characterized using a weighted variant of cross invariance. Efficiency is derived rather than assumed in our characterizations. This fresh perspective contributes to a deeper understanding of the Shapley value and its applicability.
机构:
Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela, SpainUniv Barcelona, Dept Matemat Econ Financera & Actuarial, Barcelona, Spain