How polymer infiltration affects metal-organic frameworks-based facilitated hybrid membrane performances for CO2 separation

被引:0
|
作者
Liu, Xiaohui [1 ,2 ]
Li, Boyu [1 ]
Liu, Jiaxiang [1 ]
He, Xuanting [1 ]
Liu, Huachen [1 ]
Mao, Shun [1 ,2 ]
Tao, Wenquan [1 ,2 ]
Li, Zhuo [1 ,2 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Facilitated hybrid membranes; CO; 2; separation; Metal-organic framework; Molecular dynamic simulation; Polymer infiltration; FORCE-FIELD; NANOSHEETS; SURFACE; NANOCOMPOSITE; SIMULATIONS; ALGORITHMS; INTERFACE;
D O I
10.1016/j.memsci.2023.122219
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Membrane separation technology has been widely used in the separation and capture of CO2 to reduce carbon emissions. The performances of facilitated hybrid membranes (FHMs) can be improved by properly adding metal-organic framework (MOF)-based nanoparticles (NPs) and modifying polymers to the polymer matrix. Grafting and blending methods are widely used to introduce modifying polymers to improve the compatibility between NPs and the polymer matrix, and the performance of FHMs for CO2 separation. However, the separation performance of FHMs decreases significantly when the long chains of the polymer infiltrate into the pores of the MOF at the interface between the modifying polymer and MOF. To in-depth understand the nano-scale polymerNPs interfacial interaction mechanism of the grafting and blending methods, we herein employed molecular dynamic (MD) simulation method combined with experiments to investigate the interface between NPs of CuMOF (Cu-BDC) and four commonly used modifying polymers (PEG, polyethylene glycol; PEI, polyethylenimine; PVA, polyvinyl alcohol; PPy, polypyrrole) with PVDF (polyvinylidene difluoride) as the polymer matrix. The results showed that the blending method for modification can effectively avoid the polymer blockage in Cu-BDC pores by using four modifying polymers, while the grafting method caused polymer infiltration for PEG and PEI. The relationship between the polymer diameter and the pore limiting diameter (PLD) of the CuBDC was evaluated to analyze the polymer infiltration effect. FHMs of Cu-BDC/PEG@PVDF were synthesized based on the MD simulation results, which showed excellent CO2 separation performance due to the good compatibility between the Cu-BDC and the modified matrix polymer. This work offers an insight in nano-scale into the interface design between the MOF and the polymer for FHMs separating CO2.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] CO2 Hydrogenation on Metal-Organic Frameworks-Based Catalysts: A Mini Review
    Zhang, Qian
    Wang, Sen
    Dong, Mei
    Fan, Weibin
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [2] Applications of Metal-Organic Frameworks-Based Membranes in Separation
    Liu, Hui
    Yu, Shouwu
    Wang, Ziyang
    Xiao, Shujuan
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (24):
  • [3] Utilizing metal-organic frameworks for CO2 separation
    Farha, Omar K.
    Hupp, Joseph T.
    Wilmer, Christopher E.
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [4] Metal-Organic Frameworks-Based Copper Catalysts for CO2 Electroreduction Toward Multicarbon Products
    Qin, Chen
    Li, Xuheng
    Wang, Ting
    Xu, Zhen
    Chen, Kai-Jie
    Pan, Fuping
    EXPLORATION, 2025,
  • [5] Computational screening of metal-organic frameworks for CO2 separation
    Jiang, Jianwen
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 57 - 64
  • [6] Research progress of metal-organic frameworks-based materials for CO2 capture and CO2-to-alcohols conversion
    Xu, Xinmeng
    Wei, Qiuhua
    Xi, Zuoshuai
    Zhao, Danfeng
    Chen, Juan
    Wang, Jingjing
    Zhang, Xiaowei
    Gao, Hongyi
    Wang, Ge
    COORDINATION CHEMISTRY REVIEWS, 2023, 495
  • [7] Novel hybrid CO2 capture sorbents based on metal-organic frameworks
    Park, Ah-Hyung
    Rim, Guanhe
    Feric, Tony
    Smit, Berend
    Stylianou, Kyriakos
    Valizadeh, Bardiya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [8] Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future
    Mo, Zhousheng
    Ajmal, Saira
    Tabish, Mohammad
    Kumar, Anuj
    Yasin, Ghulam
    Zhao, Wei
    FUEL PROCESSING TECHNOLOGY, 2023, 244
  • [9] Advanced strategies in Metal-Organic Frameworks for CO2 Capture and Separation
    Usman, Muhammad
    Iqbal, Naseem
    Noor, Tayyaba
    Zaman, Neelam
    Asghar, Aisha
    Abdelnaby, Mahmoud M.
    Galadima, Ahmad
    Helal, Aasif
    CHEMICAL RECORD, 2022, 22 (07):
  • [10] Perspective of microporous metal-organic frameworks for CO2 capture and separation
    Zhang, Zhangjing
    Yao, Zi-Zhu
    Xiang, Shengchang
    Chen, Banglin
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) : 2868 - 2899