Object Detection with Hyperparameter and Image Enhancement Optimisation for a Smart and Lean Pick-and-Place Solution

被引:0
|
作者
Kee, Elven [1 ]
Chong, Jun Jie [1 ]
Choong, Zi Jie [1 ]
Lau, Michael [1 ]
机构
[1] Nanyang Polytech Singapore, Newcastle Univ Singapore, Fac Sci Agr & Engn, SIT Bldg, Singapore 567739, Singapore
来源
SIGNALS | 2024年 / 5卷 / 01期
关键词
Single Shot Detector; MobileNet; object detection; pick-and-place solution; RGB saturation; hyperparameter;
D O I
10.3390/signals5010005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pick-and-place operations are an integral part of robotic automation and smart manufacturing. By utilizing deep learning techniques on resource-constraint embedded devices, the pick-and-place operations can be made more accurate, efficient, and sustainable, compared to the high-powered computer solution. In this study, we propose a new technique for object detection on an embedded system using SSD Mobilenet V2 FPN Lite with the optimisation of the hyperparameter and image enhancement. By increasing the Red Green Blue (RGB) saturation level of the images, we gain a 7% increase in mean Average Precision (mAP) when compared to the control group and a 20% increase in mAP when compared to the COCO 2017 validation dataset. Using a Learning Rate of 0.08 with an Edge Tensor Processing Unit (TPU), we obtain high real-time detection scores of 97%. The high detection scores are important to the control algorithm, which uses the bounding box to send a signal to the collaborative robot for pick-and-place operation.
引用
收藏
页码:87 / 104
页数:18
相关论文
共 50 条
  • [1] A Comparative Analysis of Cross-Validation Techniques for a Smart and Lean Pick-and-Place Solution with Deep Learning
    Kee, Elven
    Chong, Jun Jie
    Choong, Zi Jie
    Lau, Michael
    ELECTRONICS, 2023, 12 (11)
  • [2] Development of Smart and Lean Pick-and-Place System Using EfficientDet-Lite for Custom Dataset
    Kee, Elven
    Chong, Jun Jie
    Choong, Zi Jie
    Lau, Michael
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [3] Validating an object placement planner for robotic pick-and-place tasks
    Harada, Kensuke
    Tsuji, Tokuo
    Nagata, Kazuyuki
    Yamanobe, Natsuki
    Onda, Hiromu
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2014, 62 (10) : 1463 - 1477
  • [4] Class Incremental Robotic Pick-and-Place via Incremental Few-Shot Object Detection
    Deng, Jieren
    Zhang, Haojian
    Hu, Jianhua
    Zhang, Xingxuan
    Wang, Yunkuan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09) : 5974 - 5981
  • [5] A Dataset for Improved RGBD-Based Object Detection and Pose Estimation for Warehouse Pick-and-Place
    Rennie, Colin
    Shome, Rahul
    Bekris, Kostas E.
    De Souza, Alberto F.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02) : 1179 - 1185
  • [6] Robotic Pick-and-Place With Uncertain Object Instance Segmentation and Shape Completion
    Gualtieri, Marcus
    Platt, Robert
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 1753 - 1760
  • [7] Pick-and-Place Robotics Implementation Under the Influence of Lean Manufacturing - A Process Model
    Rossini, Matteo
    Kassem, Bassel
    Narayanamurthy, Gopalakrishnan
    Staudacher, Alberto Portioli
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS-PRODUCTION MANAGEMENT SYSTEMS FOR VOLATILE, UNCERTAIN, COMPLEX, AND AMBIGUOUS ENVIRONMENTS, APMS 2024, PT III, 2024, 730 : 162 - 175
  • [8] Robot Vision To Recognize Both Object And Rotation For Robot Pick-And-Place Operation
    Lin, Hsien-I
    Chen, Yi-Yu
    Chen, Yung-Yao
    2015 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND INTELLIGENT SYSTEMS (ARIS), 2015,
  • [9] The effects of selected object features on a pick-and-place task: A human multimodal dataset
    Lastrico, Linda
    Belcamino, Valerio
    Carfi, Alessandro
    Vignolo, Alessia
    Sciutti, Alessandra
    Mastrogiovanni, Fulvio
    Rea, Francesco
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2024, 43 (01): : 98 - 109
  • [10] Self-Supervised Learning for Precise Pick-and-Place Without Object Model
    Berscheid, Lars
    Meissner, Pascal
    Kroger, Torsten
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) : 4828 - 4835