Complementary Mass Transport Investigations in Open-Cell Foams: Full-Field Computational Fluid Dynamics Simulation with Random-Walk Microscopic Particle Tracking and Methane Nuclear Magnetic Resonance Displacement Measurements

被引:0
|
作者
Sadeghi, Mehrdad [1 ]
Brix, Andreas [2 ]
Trunk, Sebastian [3 ]
Pesch, Georg R. [1 ,6 ]
Freund, Hannsjoerg [2 ]
Thoeming, Jorg [1 ,4 ,5 ]
机构
[1] Univ Bremen, Chem Proc Engn, Leobener Str 6, D-28359 Bremen, Germany
[2] TU Dortmund Univ, Inst React Engn & Catalysis, Dept Biochem & Chem Engn, Emil Figge Str 66, D-44227 Dortmund, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg FAU, Lehrstuhl Chem Reaktionstech, IZNF, Cauerstr 3, D-91058 Erlangen, Germany
[4] Univ Bremen, MAPEX Ctr Mat & Proc, POB 330 440, D-28334 Bremen, Germany
[5] Univ Bremen, Ctr Environm Res & Sustainable Technol UFT, POB 330 440, D-28334 Bremen, Germany
[6] Univ Coll Dublin, Sch Chem & Bioproc Engn, Dublin 4, Ireland
关键词
Pore-scale CFD simulations; Pulsed-field gradient NMR; Diffusion propagator; Self-diffusion; Near-wall diffusion; Cross-validation; Dispersion coefficient; disTrackFOAM; SINGLE-PHASE HYDRODYNAMICS; POROUS-MEDIA; LONGITUDINAL DISPERSION; LATTICE-BOLTZMANN; HEAT-TRANSFER; FLOW; COEFFICIENT; DIFFUSION; CATALYSTS; REACTORS;
D O I
10.1007/s11242-023-02045-w
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Numerical simulation can provide detailed understanding of mass transport within complex structures. For this purpose, numerical tools are required that can resolve the complex morphology and consider the contribution of both convection and diffusion. Solving the Navier-Stokes equations alone, however, neglects self<bold>-</bold>diffusion. This influences the simulated displacement distribution of flow especially in porous media at low P & eacute;clet numbers (Pe < 16) and in near-wall regions where diffusion is the dominant mechanism. To address this problem, this study uses mu CT-based computational fluid dynamics (CFD) simulations in OpenFOAM coupled with the random-walk particle tracking (PT) module disTrackFoam and cross-validated experimentally using pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) measurements of gas flow within open-cell foams (OCFs). The results of the multi-scale simulations-with a resolution of 130-190 <mu>m-and experimental PFG NMR data are compared in terms of diffusion propagators, which are microscopic displacement distributions of gas flows in OCFs during certain observation times. Four different flow rates with P & eacute;clet numbers in the range of 0.7-16 are studied in the laminar flow regime within 10 and 20 PPI OCFs, and axial dispersion coefficients were calculated. Cross-validation of PFG NMR measurements and CFD-PT simulations revealed a very good matching with integral differences below 0.04%, underpinning the capability of both complementary methods for multi-scale transport analysis.
引用
收藏
页码:645 / 664
页数:20
相关论文
共 1 条