FINITE SOLVABLE TIDY GROUPS ARE DETERMINED BY HALL SUBGROUPS WITH TWO PRIMES

被引:1
|
作者
Beike, Nicolas F. [1 ]
Carleton, Rachel [1 ]
Costanzo, David G. [2 ]
Heath, Colin [3 ]
Lewis, Mark L. [1 ]
Lu, Kaiwen [4 ]
Pearce, Jamie D. [5 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Clemson Univ, Sch Math & Stat Sci, O110 Martin Hall,Box 340975, Clemson, SC 29634 USA
[3] New York Univ, Sch Law, 40 Washington Sq South, New York, NY 10012 USA
[4] Brown Univ, Dept Math, Providence, RI 02912 USA
[5] Univ Texas Austin, Dept Math, 2515 Speedway,PMA 8-100, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
tidy groups; solvable groups; Hall subgroups;
D O I
10.1017/S0004972723000710
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate finite solvable tidy groups. We prove that a solvable group with order divisible by at least two primes is tidy if all of its Hall subgroups that are divisible by only two primes are tidy.
引用
收藏
页码:342 / 349
页数:8
相关论文
共 50 条
  • [1] Finite solvable tidy groups whose orders are divisible by two primes
    Beike, Nicolas F.
    Carleton, Rachel
    Costanzo, David G.
    Heath, Colin
    Lewis, Mark L.
    Lu, Kaiwen
    Pearce, Jamie D.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 1651 - 1669
  • [2] On the Intersections of Solvable Hall Subgroups in Finite Groups
    Vdovin, E. P.
    Zenkov, V. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 267 : S234 - S243
  • [3] On the intersections of solvable Hall subgroups in finite groups
    E. P. Vdovin
    V. I. Zenkov
    Proceedings of the Steklov Institute of Mathematics, 2009, 267 (Suppl 1) : 234 - 243
  • [4] On the intersections of solvable Hall subgroups in finite groups
    Vdovin, E. P.
    Zenkov, V. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (02): : 74 - 83
  • [5] On intersections of solvable Hall subgroups in finite nonsolvable groups
    Zenkov V.I.
    Proceedings of the Steklov Institute of Mathematics, 2007, 259 (Suppl 2) : S250 - S253
  • [6] On intersections of solvable Hall subgroups in finite nonsolvable groups
    Zenkov, V. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2007, 13 (02): : 86 - 89
  • [7] Finite π-Solvable Groups Whose Maximal Subgroups Have the Hall Property
    Monakhov, V. S.
    MATHEMATICAL NOTES, 2008, 84 (3-4) : 363 - 366
  • [8] Finite π-solvable groups whose maximal subgroups have the Hall property
    V. S. Monakhov
    Mathematical Notes, 2008, 84 : 363 - 366
  • [10] On intersection of solvable Hall subgroups in finite simple exceptional groups of Lie type
    Vdovin, E. P.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (03): : 62 - 70