Robust H∞ control for fractional order singular systems 0 < α < 1 with uncertainty

被引:2
|
作者
Li, Bingxin [1 ,2 ]
Zhao, Xin [1 ,2 ,3 ]
机构
[1] Nankai Univ, Inst Robot & Automat Informat Syst, Tianjin 300071, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Intelligent Robot, Tianjin 300071, Peoples R China
[3] Nankai Univ, Shenzhen Res Inst, Inst Intelligence Technol & Robot Syst, Shenzhen, Peoples R China
来源
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
fractional order singular systems; H-infinity control; linear matrix inequality; robust H-infinity control; SLIDING MODE CONTROL; BOUNDED REAL LEMMAS; STABILIZATION; ADMISSIBILITY; STABILITY;
D O I
10.1002/oca.2939
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies robust H-infinity control for fractional order singular systems (FOSS) 0 <alpha < 1 with uncertainty. First, the condition based on the linear matrix inequality (LMI) is obtained for fractional order systems with 0 <alpha< 1 in Corollary 1. Compared with existing results, by using two matrices to replace the complex matrix, the condition is easier to solve. Based on Corollary 1, the condition of H-infinity control based on non-strict LMI for FOSS without uncertainty is proposed. The strict LMI-based conditions of H-infinity control are improved to overcome the equality constraints. Finally, the LMI-based conditions of robust H-infinity control are proposed for FOSS. Four examples are shown to illustrate the effectiveness of the method.
引用
收藏
页码:332 / 348
页数:17
相关论文
共 50 条
  • [1] Robust H∞ Control of Fractional-Order Switched Systems with Order 0 &lt; α &lt; 1 and Uncertainty
    Li, Bingxin
    Zhao, Xiangfei
    Liu, Yaowei
    Zhao, Xin
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [2] H∞ control for singular fractional-order interval systems: The 0 &lt; α &lt; 1 case
    Zhang, Qing-Hao
    Lu, Jun-Guo
    ISA TRANSACTIONS, 2021, 110 : 105 - 116
  • [3] Output feedback robust H∞ control for uncertain descriptor fractional order systems with 0 &lt; α &lt; 1
    Zhang, Xuefeng
    Ai, Jie
    JOURNAL OF VIBRATION AND CONTROL, 2023, 29 (11-12) : 2647 - 2657
  • [4] Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0 &lt; α &lt; 1 case
    Zhang, Xuefeng
    Chen, YangQuan
    ISA TRANSACTIONS, 2018, 82 : 42 - 50
  • [5] THE CONTROLLER DESIGN FOR SINGULAR FRACTIONAL-ORDER SYSTEMS WITH FRACTIONAL ORDER 0 &lt; α &lt; 1
    Zhan, T.
    Ma, S. P.
    ANZIAM JOURNAL, 2018, 60 (02): : 230 - 248
  • [6] Robust stabilization of uncertain descriptor fractional-order systems with the fractional order α(0 &lt; α &lt; 1)
    Zhang, Xuefeng
    Li, Bingxin
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 560 - 563
  • [7] Observer-based control for fractional-order singular systems with order α (0 &lt; α &lt; 1) and input delay
    Li, Bingxin
    Zhao, Xiangfei
    Zhang, Xuefeng
    Zhao, Xin
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (12) : 1862 - 1870
  • [8] Robust stabilization for rectangular descriptor fractional order interval systems with order 0 &lt; α &lt; 1
    Zhang, Xuefeng
    Zhao, Zeli
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 366
  • [9] Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order α: The 0 &lt; α &lt; 1 Case
    Lu, Jun-Guo
    Chen, Yang-Quan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (01) : 152 - 158
  • [10] Positive real lemmas for singular fractional-order systems: the 0 &lt; α &lt; 1 case
    Zhang, Qing-Hao
    Lu, Jun-Guo
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (18): : 2805 - 2813