Carbon dioxide conversion to value-added products and fuels: opportunities and challenges: a critical review

被引:11
|
作者
Shah, Mudasir Akbar [1 ,4 ]
Shibiru, Abel L. [2 ]
Kumar, Vimal [3 ]
Srivastava, Vimal Chandra [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Chem Engn, Dhahran, Saudi Arabia
[2] Wollo Univ, Kombolcha Inst Technol, Dept Chem Engn, Kombolcha, Ethiopia
[3] Indian Inst Technol Roorkee, Dept Chem Engn, Roorkee, Uttarakhand, India
[4] King Fahd Univ Petr & Minerals, Inst Energy Infrastruct IEI, Dept Chem Engn, Dhahran 31261, Saudi Arabia
关键词
Carbon dioxide capture and storage; carbon dioxide utilization; CO2; reduction; photoelectrochemical process; CO2 to chemicals catalyst stability; ELECTROCHEMICAL CO2 REDUCTION; CHEMICAL-LOOPING COMBUSTION; PHOTOCATALYTIC REDUCTION; ELECTROCATALYTIC REDUCTION; CLIMATE-CHANGE; MICROBIAL ELECTROSYNTHESIS; SELECTIVE CONVERSION; RECENT PROGRESS; CATALYST; CAPTURE;
D O I
10.1080/15435075.2023.2281330
中图分类号
O414.1 [热力学];
学科分类号
摘要
Carbon dioxide (CO2) conversion to value-added products and fuels is one of the most promising approaches to reducing CO2 accumulation in the environment and resolving the scarcity of sustainable energy. Renewable carbon may be an alternative source to avoid combustible products such as petroleum and coal in order to decrease CO2 emissions. It is necessary to introduce the latest technologies and procedures to mature novel carbon recycling methods for CO2.The value-added products can be synthesized by using photocatalysis, electrochemical (ECR), thermochemical, and bio-electrochemical reduction processes, along with homogeneous and heterogeneous catalysts. Among such techniques, CO2 conversion by photocatalysis plays an important role in resolving global warming and the energy crisis. Researchers developed CO2 hydrogenation catalysts for the production of alcohols, liquid fuels, dimethyl ether, and light olefins through Fischer-Tropsch and methanol reactions. Photoelectrochemical CO2 conversion produces formic acid, formaldehyde, formate, methane, ethanol, and methanol and is reflected as an artificial photosynthesis method. Due to the huge energy demand, extensive efforts have been made for alternative, cheap, eco-friendly, highly efficient, economical, and marketable reduction processes and products. It has been known that slag residues with high temperatures from iron and steel factories can be used as a source of energy. Catalyst stability, selectivity, yields, and activity have been future challenges for achieving indispensable conversion processes. In this review, current advancements in conversion processes, mechanisms, catalysts, and carbon capture systems have been broadly reviewed. Furthermore, the challenges associated with its advancement are also illustrated. This review will have a positive impact on carbon dioxide mitigation and production, which are highly efficient with significant applications of value-added products. [GRAPHICS]
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products
    Kumaravel, Vignesh
    Bartlett, John
    Pillai, Suresh C.
    ACS ENERGY LETTERS, 2020, 5 (02): : 486 - 519
  • [2] Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review
    Papari, Sadegh
    Bamdad, Hanieh
    Berruti, Franco
    MATERIALS, 2021, 14 (10)
  • [3] Progress in heterostructures for photoelectrocatalytic reduction of carbon dioxide into fuels and value-added products
    Maitlo, Hubdar Ali
    Younis, Sherif A.
    Lee, Caroline Sunyong
    Kim, Ki-Hyun
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2025, 341
  • [4] Developing diatoms for value-added products: challenges and opportunities
    Fu, Weiqi
    Wichuk, Kristine
    Brynjolfsson, Sigurdur
    NEW BIOTECHNOLOGY, 2015, 32 (06) : 547 - 551
  • [5] Lignocellulosic conversion into value-added products: A review
    Haldar, Dibyajyoti
    Purkait, Mihir Kumar
    PROCESS BIOCHEMISTRY, 2020, 89 : 110 - 133
  • [6] Opportunities of biodiesel industry waste conversion into value-added products
    Chilakamarry, Chaitanya Reddy
    Sakinah, A. M. Mimi
    Zularisam, A. W.
    MATERIALS TODAY-PROCEEDINGS, 2022, 57 : 1014 - 1020
  • [7] Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts
    Akhundi, Anise
    Habibi-Yangjeh, Aziz
    Abitorabi, Masoud
    Pouran, Shima Rahim
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2019, 61 (04): : 595 - 628
  • [8] Catalytic conversion and mechanism of glycerol into various value-added products: A critical review
    Yadav, Nidhi
    Yadav, Gaurav
    Ahmaruzzaman, Md.
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 210
  • [9] A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels
    Puliyalil, Harinarayanan
    Jurkovic, Damjan Lasic
    Dasireddy, Venkata D. B. C.
    Likozar, Blaz
    RSC ADVANCES, 2018, 8 (48) : 27481 - 27508
  • [10] Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks
    Yang, Ren-Xuan
    Jan, Kalsoom
    Chen, Ching-Tien
    Chen, Wan-Ting
    Wu, Kevin C-W
    CHEMSUSCHEM, 2022, 15 (11)