Uniqueness of conical singularities for mean curvature flows

被引:1
|
作者
Lee, Tang-Kai [1 ]
Zhao, Xinrui [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Asymptotically conical shrinkers; Mean curvature flow; Uniqueness of tangent flows; SUBMANIFOLDS; SHRINKERS; EQUATIONS; STABILITY; SURFACES; BEHAVIOR;
D O I
10.1016/j.jfa.2023.110200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the uniqueness of asymptotically conical tangent flows in all codimensions. This is based on an early work of Chodosh-Schulze, who proved the uniqueness in the hypersurface case.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Mean curvature flow from conical singularities
    Chodosh, Otis
    Daniels-Holgate, J. M.
    Schulze, Felix
    INVENTIONES MATHEMATICAE, 2024, 238 (03) : 1041 - 1066
  • [2] NECKPINCH SINGULARITIES IN FRACTIONAL MEAN CURVATURE FLOWS
    Cinti, Eleonora
    Sinestrari, Carlo
    Valdinoci, Enrico
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (06) : 2637 - 2646
  • [3] Singularities of symplectic and Lagrangian mean curvature flows
    Xiaoli Han
    Jiayu Li
    Frontiers of Mathematics in China, 2009, 4 : 283 - 296
  • [4] Singularities of symplectic and Lagrangian mean curvature flows
    Han, Xiaoli
    Li, Jiayu
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (02) : 283 - 296
  • [5] Uniqueness of grim hyperplanes for mean curvature flows
    Tasayco, Ditter
    Zhou, Detang
    ARCHIV DER MATHEMATIK, 2017, 109 (02) : 191 - 200
  • [6] Uniqueness of grim hyperplanes for mean curvature flows
    Ditter Tasayco
    Detang Zhou
    Archiv der Mathematik, 2017, 109 : 191 - 200
  • [7] Uniqueness of compact tangent flows in Mean Curvature Flow
    Schulze, Felix
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 690 : 163 - 172
  • [8] Subsequent singularities of mean convex mean curvature flows in smooth manifolds
    Ding, Qi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (01) : 1 - 12
  • [9] EXISTENCE AND UNIQUENESS FOR ANISOTROPIC AND CRYSTALLINE MEAN CURVATURE FLOWS
    Chambolle, Antonin
    Morini, Massimiliano
    Novaga, Matteo
    Ponsiglione, Marcello
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 32 (03) : 779 - 824
  • [10] Subsequent singularities of mean convex mean curvature flows in smooth manifolds
    Qi Ding
    Calculus of Variations and Partial Differential Equations, 2016, 55