Convolution Integral Operators in Variable Bounded Variation Spaces

被引:2
|
作者
Angeloni, Laura [1 ]
Merentes, Nelson J. [2 ]
Valera-Lopez, Maira A. [2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
[2] Univ Cent Venezuela, Escuela Matemat, Fac Ciencias, Caracas 1010, Venezuela
关键词
Convolution integral operators; bounded variation spaces with variable exponent; convergence in variable variation; modulus of smoothness; LINEAR GROWTH; CONVERGENCE; EXPONENT; FUNCTIONALS;
D O I
10.1007/s00009-023-02358-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Working in the frame of variable bounded variation spaces in the sense of Wiener, introduced by Castillo, Merentes, and Rafeiro, we prove convergence in variable variation by means of the classical convolution integral operators. In the proposed approach, a crucial step is the convergence of the variable modulus of smoothness for absolutely continuous functions. Several preliminary properties of the variable p(& BULL;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-variation are also presented.
引用
收藏
页数:20
相关论文
共 50 条