Levenberg-Marquardt method and partial exact penalty parameter selection in bilevel optimization

被引:6
|
作者
Tin, Andrey [1 ,2 ]
Zemkoho, Alain B. [1 ,2 ]
机构
[1] Ctr Operat Res Management Sci & Informat Syst COR, Southampton, Hants, England
[2] Univ Southampton, Sch Math Sci, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
Bilevel optimization; Value function reformulation; Partial exact penalization parameter; Partial calmness; Levenberg-Marquardt method; CHEMICAL PROCESS DESIGN; OPTIMALITY CONDITIONS; PROGRAMMING PROBLEM; FORMULATION; FRAMEWORK;
D O I
10.1007/s11081-022-09736-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the optimistic bilevel optimization problem, known to have a wide range of applications in engineering, that we transform into a single-level optimization problem by means of the lower-level optimal value function reformulation. Subsequently, based on the partial calmness concept, we build an equation system, which is parameterized by the corresponding partial exact penalization parameter. We then design and analyze a Levenberg-Marquardt method to solve this parametric system of equations. Considering the fact that the selection of the partial exact penalization parameter is a critical issue when numerically solving a bilevel optimization problem by means of the value function reformulation, we conduct a careful experimental study to this effect, in the context of the Levenberg-Marquardt method, while using the Bilevel Optimization LIBrary (BOLIB) series of test problems. This study enables the construction of some safeguarding mechanisms for practical robust convergence of the method and can also serve as base for the selection of the penalty parameter for other bilevel optimization algorithms. We also compare the Levenberg-Marquardt method introduced in this paper to other existing algorithms of similar nature.
引用
收藏
页码:1343 / 1385
页数:43
相关论文
共 50 条
  • [1] Levenberg–Marquardt method and partial exact penalty parameter selection in bilevel optimization
    Andrey Tin
    Alain B. Zemkoho
    Optimization and Engineering, 2023, 24 : 1343 - 1385
  • [2] A note on the Levenberg-Marquardt parameter
    Fan, Jinyan
    Pan, Jianyu
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 351 - 359
  • [3] A fresh look at nonsmooth Levenberg-Marquardt methods with applications to bilevel optimization
    Jolaoso, Lateef O.
    Mehlitz, Patrick
    Zemkoho, Alain B.
    OPTIMIZATION, 2024,
  • [4] Parameter extraction and optimization using Levenberg-Marquardt algorithm
    Duc-Hung, Le
    Cong-Kha, Pham
    Trang, Nguyen Thi Thien
    Tu, Bui Trong
    2012 FOURTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS (ICCE), 2012, : 434 - 437
  • [5] A parameter determination method of powder burn model based on Levenberg-Marquardt optimization
    Bi, Shengfan
    Huang, Yong
    Zhao, Jinyu
    Wang, Shuyao
    Wang, Hao
    JOURNAL OF ENERGETIC MATERIALS, 2024,
  • [6] Automatic Image Parameter Optimization Based on Levenberg-Marquardt Algorithm
    Zheng Jinxin
    Du Junping
    ISIE: 2009 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2009, : 719 - 723
  • [7] Levenberg-Marquardt method with general convex penalty for nonlinear inverse problems
    Fu, Zhenwu
    Han, Bo
    Chen, Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [8] Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-Marquardt Neural Networks
    Yan, Zhiqi
    Zhong, Shisheng
    Lin, Lin
    Cui, Zhiquan
    MATHEMATICS, 2021, 9 (17)
  • [9] ON THE GLOBAL CONVERGENCE OF A PARAMETER-ADJUSTING LEVENBERG-MARQUARDT METHOD
    Qi, Liyan
    Xiao, Xiantao
    Zhang, Liwei
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (01): : 25 - 36
  • [10] Algebraic rules for computing the regularization parameter of the Levenberg-Marquardt method
    Karas, Elizabeth W.
    Santos, Sandra A.
    Svaiter, Benar F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (03) : 723 - 751