Crop NDVI time series construction by fusing Sentinel-1, Sentinel-2, and environmental data with an ensemble-based framework

被引:8
|
作者
Chen, Dairong [1 ,4 ]
Hu, Haoxuan [1 ]
Liao, Chunhua [1 ,2 ]
Ye, Junyan [1 ]
Bao, Wenhao [1 ]
Mo, Jinglin [1 ]
Wu, Yue [1 ]
Dong, Taifeng [3 ]
Fan, Hong [4 ]
Pei, Jie [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Geospatial Engn & Sci, Zhuhai 519082, Peoples R China
[2] Minist Nat Resources, Key Lab Nat Resources Monitoring Trop & Subtrop Ar, Guangzhou 510642, Peoples R China
[3] Agr & Agrifood Canada, Ottawa Res & Dev Ctr, Ottawa, ON K1A 0C6, Canada
[4] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, 129 Luoyu Rd, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
NDVI time series; Polarimetric SAR; ERA5-Land; Random forest; Ensemble learning; TEMPERATURE SENSITIVITY; FEATURE-SELECTION; GROWTH; MODEL; RESPIRATION; MOISTURE; CLOUD; WHEAT;
D O I
10.1016/j.compag.2023.108388
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Satellite-based Normalized Difference Vegetation Index (NDVI) time series data are conducive for near-real-time (NRT) monitoring of crop progress, but they commonly suffer from data gaps due to cloudy weather conditions. Fortunately, Synthetic Aperture Radar (SAR) data, which are cloud-insensitive, has high potentials to fill these data gaps. However, the relationship between NDVI and SAR data is not generic and affected by various factors (e.g., crop canopy structure and phenology, soil exposure and humidity). Therefore, it is worth exploring to evaluate the relationships and develop a more robust SAR-NDVI fusion method for NDVI time series construction. In this study, we proposed and evaluated an ensemble-based data fusion framework that accounts for these factors, based on which dense NDVI time series for crop monitoring were constructed. The framework consisted of three steps: (1) NDVI was predicted from Sentinel-1 SAR data and auxiliary environmental factors using a random forest (RF) model; (2) an improved feature importance measurement method was proposed to reveal the different contributions of multisource data to the modeling, and suggestions for selecting optimal input parameters were presented; (3) the uncertainty of the predicted data was quantified by an ensemble-based method and incorporated into a Weighted Least Squares (WLS) method to construct dense NDVI time series. Results showed that the RF models were generally improved by the auxiliary data and achieved a satisfactory accuracy of NDVI estimation (R2 > 0.93, RMSE < 0.075) for both corn and soybean crops in Southwestern Ontario, Canada. The proposed method performed well in filling data gaps in both the vegetative and reproductive stages for corn and soybean, providing a practical and promising solution for continuous crop monitoring.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Monitoring Irrigation Events and Crop Dynamics Using Sentinel-1 and Sentinel-2 Time Series
    Ma, Chunfeng
    Johansen, Kasper
    McCabe, Matthew F.
    REMOTE SENSING, 2022, 14 (05)
  • [2] Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany
    Blickensdoerfer, Lukas
    Schwieder, Marcel
    Pflugmacher, Dirk
    Nendel, Claas
    Erasmi, Stefan
    Hostert, Patrick
    REMOTE SENSING OF ENVIRONMENT, 2022, 269
  • [3] Use of time series Sentinel-1 and Sentinel-2 image for rice crop inventory in parts of Bangladesh
    Aziz, Md. Abdullah
    Haldar, Dipanwita
    Danodia, Abhishek
    Chauhan, Prakash
    APPLIED GEOMATICS, 2023, 15 (02) : 407 - 420
  • [4] Use of time series Sentinel-1 and Sentinel-2 image for rice crop inventory in parts of Bangladesh
    Md. Abdullah Aziz
    Dipanwita Haldar
    Abhishek Danodia
    Prakash Chauhan
    Applied Geomatics, 2023, 15 : 407 - 420
  • [5] Crop type classification with combined spectral, texture, and radar features of time-series Sentinel-1 and Sentinel-2 data
    Cheng, Gang
    Ding, Huan
    Yang, Jie
    Cheng, Yushu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (04) : 1215 - 1237
  • [6] Mapping Crop Types of Germany by Combining Temporal Statistical Metrics of Sentinel-1 and Sentinel-2 Time Series with LPIS Data
    Asam, Sarah
    Gessner, Ursula
    Gonzalez, Roger Almengor
    Wenzl, Martina
    Kriese, Jennifer
    Kuenzer, Claudia
    REMOTE SENSING, 2022, 14 (13)
  • [7] Generating Virtual Training Labels for Crop Classification from Fused Sentinel-1 and Sentinel-2 Time Series
    Teimouri, Maryam
    Mokhtarzade, Mehdi
    Baghdadi, Nicolas
    Heipke, Christian
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2023, 91 (06): : 413 - 423
  • [8] Crop Detection Using Time Series of Sentinel-2 and Sentinel-1 and Existing Land Parcel Information Systems
    Snevajs, Herman
    Charvat, Karel
    Onckelet, Vincent
    Kvapil, Jiri
    Zadrazil, Frantisek
    Kubickova, Hana
    Seidlova, Jana
    Batrlova, Iva
    REMOTE SENSING, 2022, 14 (05)
  • [9] Generating Virtual Training Labels for Crop Classification from Fused Sentinel-1 and Sentinel-2 Time Series
    Maryam Teimouri
    Mehdi Mokhtarzade
    Nicolas Baghdadi
    Christian Heipke
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2023, 91 (6) : 413 - 423
  • [10] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3