Dual-Awareness Attention for Few-Shot Object Detection

被引:60
|
作者
Chen, Tung-, I [1 ]
Liu, Yueh-Cheng [1 ]
Su, Hung-Ting [1 ]
Chang, Yu-Cheng [1 ]
Lin, Yu-Hsiang [1 ]
Yeh, Jia-Fong [1 ]
Chen, Wen-Chin [1 ]
Hsu, Winston H. [1 ,2 ]
机构
[1] Natl Taiwan Univ, Taipei 106, Taiwan
[2] Mobile Drive Technol, Taipei 236, Taiwan
关键词
Feature extraction; Object detection; Detectors; Correlation; Task analysis; Power capacitors; Adaptation models; Deep learning; object detection; visual attention; few-shot object detection; NETWORKS;
D O I
10.1109/TMM.2021.3125195
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While recent progress has significantly boosted few-shot classification (FSC) performance, few-shot object detection (FSOD) remains challenging for modern learning systems. Existing FSOD systems follow FSC approaches, ignoring critical issues such as spatial variability and uncertain representations, and consequently result in low performance. Observing this, we propose a novel Dual-Awareness Attention (DAnA) mechanism that enables networks to adaptively interpret the given support images. DAnA transforms support images into query-position-aware (QPA) features, guiding detection networks precisely by assigning customized support information to each local region of the query. In addition, the proposed DAnA component is flexible and adaptable to multiple existing object detection frameworks. By adopting DAnA, conventional object detection networks, Faster R-CNN and RetinaNet, which are not designed explicitly for few-shot learning, reach state-of-the-art performance in FSOD tasks. In comparison with previous methods, our model significantly increases the performance by 47% (+6.9 AP), showing remarkable ability under various evaluation settings.
引用
收藏
页码:291 / 301
页数:11
相关论文
共 50 条
  • [1] Center Heatmap Attention for Few-Shot Object Detection
    Li, Fanglin
    Yuan, Jie
    Yi, Fengshu
    Cai, Xiaomin
    Gao, Hao
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021, 2021, 11884
  • [2] Few-Shot Object Detection using Global Attention and Support Attention
    Yang, Chongzhi
    Yu, Linfang
    Xiao, Peng
    Wang, Bintao
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1446 - 1450
  • [3] Few-Shot Object Detection via Understanding Convolution and Attention
    Tong, Jiaxing
    Chen, Tao
    Wang, Qiong
    Yao, Yazhou
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 674 - 687
  • [4] Few-Shot Object Detection: A Survey
    Antonelli, Simone
    Avola, Danilo
    Cinque, Luigi
    Crisostomi, Donato
    Foresti, Gian Luca
    Galasso, Fabio
    Marini, Marco Raoul
    Mecca, Alessio
    Pannone, Daniele
    ACM COMPUTING SURVEYS, 2022, 54 (11S)
  • [5] Few-Shot Object Counting and Detection
    Thanh Nguyen
    Chau Pham
    Khoi Nguyen
    Minh Hoai
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 348 - 365
  • [6] Few-Shot Video Object Detection
    Fan, Qi
    Tang, Chi-Keung
    Tai, Yu-Wing
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 76 - 98
  • [7] Few-Shot Object Detection of drones
    Zou Weibao
    Liu Xindi
    Yang Jitao
    Qu Wei
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1030 - 1034
  • [8] Object-Aware Attention in Few-Shot Learning
    Shen, Yeqing
    Mo, Lisha
    Ma, Huimin
    Hu, Tianyu
    Dong, Yuhan
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 95 - 108
  • [9] ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection
    Xin, Zhimeng
    Wu, Tianxu
    Chen, Shiming
    Zou, Yixiong
    Shao, Ling
    You, Xinge
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5564 - 5576
  • [10] Multiscale Dynamic Attention and Hierarchical Spatial Aggregation for Few-Shot Object Detection
    An, Yining
    Song, Chunlin
    APPLIED SCIENCES-BASEL, 2025, 15 (03):