ErythroidCounter: an automatic pipeline for erythroid cell detection, identification and counting based on deep learning (vol 81, pg 25541, 2022)

被引:0
|
作者
Zhou, You [1 ]
Wang, Ye [1 ]
Wu, Junhui [1 ]
Hassan, Muhammad [1 ]
Pang, Wei [2 ]
Lv, Lili [3 ]
Wang, Liupu [1 ]
Cui, Honghua [3 ]
机构
[1] Jilin Univ, 2699 Qianjin St, Changchun, Peoples R China
[2] Heriot Watt Univ, Edinburgh, Midlothian, Scotland
[3] Second Hosp Jilin Univ, Changchun, Peoples R China
关键词
D O I
10.1007/s11042-022-14028-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:27077 / 27077
页数:1
相关论文
共 50 条
  • [1] ErythroidCounter: an automatic pipeline for erythroid cell detection, identification and counting based on deep learning
    Zhou, You
    Wang, Ye
    Wu, Junhui
    Hassan, Muhammad
    Pang, Wei
    Lv, Lili
    Wang, Liupu
    Cui, Honghua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (18) : 25541 - 25556
  • [2] ErythroidCounter: an automatic pipeline for erythroid cell detection, identification and counting based on deep learning
    You Zhou
    Ye Wang
    Junhui Wu
    Muhammad Hassan
    Wei Pang
    Lili Lv
    Liupu Wang
    Honghua Cui
    Multimedia Tools and Applications, 2022, 81 : 25541 - 25556
  • [3] Correction to: ErythroidCounter: an automatic pipeline for erythroid cell detection, identification and counting based on deep learning
    You Zhou
    Ye Wang
    Junhui Wu
    Muhammad Hassan
    Wei Pang
    Lili Lv
    Liupu Wang
    Honghua Cui
    Multimedia Tools and Applications, 2023, 82 : 27077 - 27077
  • [4] Automatic detection and counting of retina cell nuclei using deep learning
    Hosseini, S. M. Hadi
    Chen, Hao
    Jablonski, Monica M.
    MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [5] Modeling and simulation of virtual learning environment for automatic control principle (vol 81, pg 43679, 2022)
    Cai, Linqin
    Cao, Shizhou
    Yi, Wenyuan
    Li, Hao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (23) : 36649 - 36649
  • [6] U-Net: deep learning for cell counting, detection, and morphometry (vol 16, pg 67, 2019)
    Falk, Thorsten
    Mai, Dominic
    Bensch, Robert
    Cicek, Ozgun
    Abdulkadir, Ahmed
    Marrakchi, Yassine
    Bohm, Anton
    Deubner, Jan
    Jackel, Zoe
    Seiwald, Katharina
    Dovzhenko, Alexander
    Tietz, Olaf
    Dal Bosco, Cristina
    Walsh, Sean
    Saltukoglu, Deniz
    Tay, Tuan Leng
    Prinz, Marco
    Palme, Klaus
    Simons, Matias
    Diester, Ilka
    Brox, Thomas
    Ronneberger, Olaf
    NATURE METHODS, 2019, 16 (04) : 351 - 351
  • [7] Automatic Lumbar MRI Detection and Identification Based on Deep Learning
    Yujing Zhou
    Yuan Liu
    Qian Chen
    Guohua Gu
    Xiubao Sui
    Journal of Digital Imaging, 2019, 32 : 513 - 520
  • [8] Automatic Lumbar MRI Detection and Identification Based on Deep Learning
    Zhou, Yujing
    Liu, Yuan
    Chen, Qian
    Gu, Guohua
    Sui, Xiubao
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (03) : 513 - 520
  • [9] An Integrated Goat Head Detection and Automatic Counting Method Based on Deep Learning
    Zhang, Yu
    Yu, Chengjun
    Liu, Hui
    Chen, Xiaoyan
    Lei, Yujie
    Pang, Tao
    Zhang, Jie
    ANIMALS, 2022, 12 (14):
  • [10] Automatic detection, identification and counting of deep-water snappers on underwater baited video using deep learning
    Baletaud, Florian
    Villon, Sebastien
    Gilbert, Antoine
    Come, Jean-Marie
    Fiat, Sylvie
    Iovan, Corina
    Vigliola, Laurent
    FRONTIERS IN MARINE SCIENCE, 2025, 12