Performance Assessment of Coal Fired Power Plant Integrated with Calcium Looping CO2 Capture Process

被引:7
|
作者
Zhang, Xuelei [1 ,2 ]
Song, Piaopiao [1 ]
机构
[1] North China Elect Power Univ, Sch Energy Power & Mech Engn, Baoding 071003, Peoples R China
[2] Univ Western Australia, Ctr Energy, Sch Mech & Chem Engn, Perth, WA, Australia
基金
中国国家自然科学基金;
关键词
Calcium looping; CO2; capture; air separation; heat integration; efficiency penalty; WASTE HEAT; SYSTEMS; TECHNOLOGY; MODEL;
D O I
10.1080/15567036.2019.1673510
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CaL technology is a promising means for post-combustion CO2 capture in already existing power plants, and heat integration is an effective way to lower the efficiency penalty caused by CO2 capture. Three cases with different heat integration degree were investigated in the manuscript to predict the efficiency penalty and the specific energy consumption for CO2 capture, aiming to find the optimum scheme of integrating capture unit into coal-fired power plant. The sensitivity analysis was also conducted to compare the impacts of key parameters. The simulation results show that the Case 3, which employs a variety of measures to improve the internal heat integration within CaL and reclaims the surplus released heat via an additional steam cycle, has the lowest efficiency penalty, 5.75%. It also indicates that heat integration in Case 3 results in a 14.4% of decrease in coal consumption, a 5.8% of reduction in power consumed by CO2 compression process, a 13.6% of drop in power consumption in ASU, and a 31.5% of decrease in specific energy consumption for CO2 capture. The sensitivity analysis shows that the efficiency penalty may be reduced by 0.011 percentage points for each degree decrease in temperature difference of MH-1. As the compression efficiency increases from 70% to 85%, the efficiency penalty decreases from 6.51% to 5.47%, and the specific energy consumption reduces from 2.21 MJ/kg CO2 to 1.80 MJ/kg CO2.
引用
收藏
页码:6096 / 6117
页数:22
相关论文
共 50 条
  • [1] Performance evaluation of an integrated redesigned coal fired power plant with CO2 capture by calcium looping process
    Zhang, Xuelei
    Song, Piaopiao
    Jiang, Lu
    APPLIED THERMAL ENGINEERING, 2020, 170
  • [2] A calcium looping process for simultaneous CO2 capture and peak shaving in a coal-fired power plant
    Zhou, Linfei
    Duan, Lunbo
    Anthony, Edward John
    APPLIED ENERGY, 2019, 235 : 480 - 486
  • [3] Evaluation of a calcium looping CO2 capture plant retrofit to a coal-fired power plant
    Hanak, Dawid P.
    Biliyok, Chechet
    Anthony, Edward
    Manovic, Vasilije
    26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2016, 38B : 2115 - 2120
  • [4] Study on the performance of coal-fired power plant integrated with Ca-looping CO2 capture system with recarbonation process
    Duan, Liqiang
    Feng, Tao
    Jia, Shilun
    Yu, Xiaohui
    ENERGY, 2016, 115 : 942 - 953
  • [5] Calcium looping for CO2 capture from a lignite fired power plant
    Vorrias, Ilias
    Atsonios, Konstantinos
    Nikolopoulos, Aristeidis
    Nikolopoulos, Nikos
    Grammelis, Panagiotis
    Kakaras, Emmanuel
    FUEL, 2013, 113 : 826 - 836
  • [6] On the flexibility of coal-fired power plants with integrated Ca-looping CO2 capture process
    Lara, Yolanda
    Romeo, Luis M.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 6552 - 6562
  • [7] Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant
    Hanak, Dawid P.
    Manovic, Vasilije
    ENERGY, 2016, 102 : 343 - 353
  • [8] Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant
    Hanak, Dawid P.
    Kolios, Athanasios J.
    Manovic, Vasilije
    APPLIED ENERGY, 2016, 172 : 323 - 336
  • [9] Assessment of CO2 capture by calcium looping (CaL) process in a flexible power plant operation scenario
    Cormos, Ana-Maria
    Simon, Abel
    APPLIED THERMAL ENGINEERING, 2015, 80 : 319 - 327
  • [10] A new integration model of the calcium looping technology into coal fired power plants for CO2 capture
    Ortiz, C.
    Chacartegui, R.
    Valverde, J. M.
    Becerra, J. A.
    APPLIED ENERGY, 2016, 169 : 408 - 420