A bifunctional superconducting cell as flux qubit and neuron

被引:2
|
作者
Pashin, Dmitrii S. [1 ]
Pikunov, Pavel, V [1 ]
Bastrakova, Marina, V [1 ,2 ]
Schegolev, Andrey E. [3 ,4 ]
Klenov, Nikolay, V [5 ,6 ]
Soloviev, Igor I. [3 ,6 ]
机构
[1] Lobachevsky State Univ Nizhni Novgorod, Fac Phys, Nizhnii Novgorod 603950, Russia
[2] Russian Quantum Ctr, Moscow 143025, Russia
[3] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[4] Moscow Tech Univ Commun & Informat MTUCI, Moscow 111024, Russia
[5] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[6] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
来源
基金
俄罗斯科学基金会;
关键词
adiabatic logic cell; flux qubit; Josephson junctio; quantum neuron; quantum parametron; superconducting quantum computers; superconducting quantum interferometer; ADIABATIC NEURON;
D O I
10.3762/bjnano.14.92
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Josephson digital or analog ancillary circuits are an essential part of a large number of modern quantum processors. The natural candidate for the basis of tuning, coupling, and neromorphic co-processing elements for processors based on flux qubits is the adia-batic (reversible) superconducting logic cell. Using the simplest implementation of such a cell as an example, we have investigated the conditions under which it can optionally operate as an auxiliary qubit while maintaining its "classical" neural functionality. The performance and temperature regime estimates obtained confirm the possibility of practical use of a single-contact inductively shunted interferometer in a quantum mode in adjustment circuits for q-processors.
引用
收藏
页码:1116 / 1126
页数:11
相关论文
共 50 条
  • [1] Dephasing of a superconducting flux qubit
    Kakuyanagi, K.
    Meno, T.
    Saito, S.
    Nakano, H.
    Semba, K.
    Takayanagi, H.
    Deppe, F.
    Shnirman, A.
    PHYSICAL REVIEW LETTERS, 2007, 98 (04)
  • [2] Neuron based on a single flux qubit
    Klenov, N.V.
    Kuznetsov, A.V.
    Schegolev, A.E.
    Soloviev, I.I.
    Bakurskiy, S.V.
    Kupriyanov, M.Yu.
    Tereshonok, M.V.
    Fizika Nizkikh Temperatur, 2019, 45 (07): : 898 - 905
  • [3] A neuron based on a single flux qubit
    Klenov, N. V.
    Kuznetsov, A. V.
    Schegolev, A. E.
    Soloviev, I. I.
    Bakurskiy, S. V.
    Kupriyanov, M. Yu.
    Tereshonok, M. V.
    LOW TEMPERATURE PHYSICS, 2019, 45 (07) : 769 - 775
  • [4] Tuning the Gap of a Superconducting Flux Qubit
    Paauw, F. G.
    Fedorov, A.
    Harmans, C. J. P. M.
    Mooij, J. E.
    PHYSICAL REVIEW LETTERS, 2009, 102 (09)
  • [5] Nondestructive readout for a superconducting flux qubit
    Lupascu, A
    Verwijs, CJM
    Schouten, RN
    Harmans, CJPM
    Mooij, JE
    PHYSICAL REVIEW LETTERS, 2004, 93 (17) : 177006 - 1
  • [6] Decoherence in a superconducting flux qubit with a π-junction
    Kato, T.
    Golubov, A. A.
    Nakamura, Y.
    PHYSICAL REVIEW B, 2007, 76 (17)
  • [7] Parametric control of a superconducting flux qubit
    Saito, S
    Meno, T
    Ueda, M
    Tanaka, H
    Semba, K
    Takayanagi, H
    PHYSICAL REVIEW LETTERS, 2006, 96 (10)
  • [8] Spectroscopy of a superconducting flux qubit in a quasidispersive mode
    B. I. Ivanov
    I. L. Novikov
    A. N. Sultanov
    Ya. S. Greenberg
    A. V. Krivetskii
    A. G. Vostretsov
    E. Il’ichev
    JETP Letters, 2016, 103 : 425 - 430
  • [9] Polarizing electron spins with a superconducting flux qubit
    Kukita, Shingo
    Ookane, Hideaki
    Matsuzaki, Yuichiro
    Kondo, Yasushi
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [10] Quantum nondemolition measurement of a superconducting flux qubit
    Takashima, Kohji
    Nishida, Munehiro
    Matsuo, Shigemasa
    Hatakenaka, Noriyuki
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 945 - +