Estimating Ocean Observation Impacts on Coupled Atmosphere-Ocean Models Using Ensemble Forecast Sensitivity to Observation (EFSO)

被引:0
|
作者
Chang, Chu-Chun [1 ,2 ]
Chen, Tse-Chun [3 ]
Kalnay, Eugenia [1 ,4 ]
Da, Cheng
Mote, Safa [1 ,5 ,6 ,7 ]
机构
[1] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[2] Woodwell Climate Res Ctr, Falmouth, MA 02540 USA
[3] Pacific Northwest Natl Lab, Richland, WA USA
[4] Cooperat Inst Satellite Earth Syst Studies, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD USA
[6] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA
[7] Portland State Univ, Fariborz Maseeh Dept Math & Stat, Portland, OR USA
基金
美国海洋和大气管理局; 美国国家科学基金会;
关键词
data assimilation; Ensemble Forecast Sensitivity to Observation; coupled data assimilation; DATA ASSIMILATION; SYSTEM; ADJOINT; ALGORITHM;
D O I
10.1029/2023GL103154
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Ensemble Forecast Sensitivity to Observation (EFSO) is a technique that can efficiently identify the beneficial/detrimental impacts of every observation in ensemble-based data assimilation (DA). While EFSO has been successfully employed on atmospheric DA, it has never been applied to ocean or coupled DA due to the lack of a suitable error norm for oceanic variables. This study introduces a new density-based error norm incorporating sea temperature and salinity forecast errors, making EFSO applicable to ocean DA for the first time. We implemented the oceanic EFSO on the CFSv2-LETKF and investigated the impact of ocean observations under a weakly coupled DA framework. By removing the detrimental ocean observations detected by EFSO, the CFSv2 forecasts were significantly improved, showing the validation of impact estimation and the great potential of EFSO to be extended as a data selection criterion.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Parameter sensitivity of a coupled atmosphere-ocean model
    S. L. Weber
    Climate Dynamics, 1998, 14 : 201 - 212
  • [2] Parameter sensitivity of a coupled atmosphere-ocean model
    Weber, SL
    CLIMATE DYNAMICS, 1998, 14 (03) : 201 - 212
  • [3] INSTABILITY AND PREDICTABILITY IN COUPLED ATMOSPHERE-OCEAN MODELS
    BATTISTI, DS
    HIRST, AC
    SARACHIK, ES
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 329 (1604): : 237 - 247
  • [4] Application of the ensemble Kalman filter to atmosphere-ocean coupled model
    Ueno, G.
    Higuchi, T.
    Kagimoto, T.
    Hirose, N.
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 125 - +
  • [5] Assessment of ocean analysis and forecast from an atmosphere-ocean coupled data assimilation operational system
    Guiavarc'h, Catherine
    Roberts-Jones, Jonah
    Harris, Chris
    Lea, Daniel J.
    Ryan, Andrew
    Ascione, Isabella
    OCEAN SCIENCE, 2019, 15 (05) : 1307 - 1326
  • [6] Linear Inverse Modeling for Coupled Atmosphere-Ocean Ensemble Climate Prediction
    Perkins, W. Andre
    Hakim, Greg
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (01)
  • [7] Application of the Ensemble Kalman Filter and Smoother to a Coupled Atmosphere-ocean Model
    Ueno, Genta
    Higuchi, Tomoyuki
    Kagimoto, Takashi
    Hirose, Naoki
    SOLA, 2007, 3 : 5 - 8
  • [8] Ensemble-Based Atmospheric Reanalysis Using a Global Coupled Atmosphere-Ocean GCM
    Komori, Nobumasa
    Enomoto, Takeshi
    Miyoshi, Takemasa
    Yamazaki, Akira
    Kuwano-Yoshida, Akira
    Taguchi, Bunmei
    MONTHLY WEATHER REVIEW, 2018, 146 (10) : 3311 - 3323
  • [9] Baiu Rainband Termination in Atmospheric and Coupled Atmosphere-Ocean Models
    Kuwano-Yoshida, Akira
    Taguchi, Bunmei
    Xie, Shang-Ping
    JOURNAL OF CLIMATE, 2013, 26 (24) : 10111 - 10124
  • [10] A Numerical Simulation Study on Ocean Wave Effect and the Sensitivity of a Regional Atmosphere-Ocean Coupled Model
    Guan Hao
    Zhang Fangran
    Yu Dandan
    Xue Yanguang
    Zhou Lin
    Wang Hanjie
    2011 INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND NEURAL COMPUTING (FSNC 2011), VOL II, 2011, : 151 - 154