The Prognostic Value of ASPHD1 and ZBTB12 in Colorectal Cancer: A Machine Learning-Based Integrated Bioinformatics Approach

被引:3
|
作者
Asadnia, Alireza [1 ,2 ,3 ]
Nazari, Elham [4 ]
Goshayeshi, Ladan [5 ,6 ]
Zafari, Nima [1 ]
Moetamani-Ahmadi, Mehrdad [1 ,2 ]
Goshayeshi, Lena [6 ]
Azari, Haneih [1 ]
Pourali, Ghazaleh [1 ]
Khalili-Tanha, Ghazaleh [1 ]
Abbaszadegan, Mohammad Reza [2 ,3 ]
Khojasteh-Leylakoohi, Fatemeh [1 ,3 ]
Bazyari, Mohammadjavad [7 ]
Kahaei, Mir Salar [2 ]
Ghorbani, Elnaz [1 ]
Khazaei, Majid [1 ,3 ]
Hassanian, Seyed Mahdi [1 ,3 ]
Gataa, Ibrahim Saeed [8 ]
Kiani, Mohammad Ali [3 ]
Peters, Godefridus J. [9 ,10 ]
Ferns, Gordon A. [11 ]
Batra, Jyotsna [12 ]
Lam, Alfred King-yin [13 ]
Giovannetti, Elisa [10 ,14 ]
Avan, Amir [1 ,7 ,12 ]
机构
[1] Mashhad Univ Med Sci, Metab Syndrome Res Ctr, Mashhad 9177948564, Iran
[2] Mashhad Univ Med Sci, Med Genet Res Ctr, Mashhad 9188617871, Iran
[3] Mashhad Univ Med Sci, Basic Sci Res Inst, Mashhad 1394491388, Iran
[4] Shahid Beheshti Univ Med Sci, Sch Allied Med Sci, Dept Hlth Informat Technol & Management, Tehran 1983969411, Iran
[5] Mashhad Univ Med Sci, Fac Med, Dept Gastroenterol & Hepatol, Mashhad 9177948564, Iran
[6] Mashhad Univ Med Sci, Surg Oncol Res Ctr, Mashhad 9177948954, Iran
[7] Mashhad Univ Med Sci, Fac Med, Dept Med Biotechnol, Mashhad 9177948564, Iran
[8] Univ Warith Al Anbiyaa, Coll Med, Karbala 56001, Iraq
[9] Med Univ Gdansk, Dept Biochem, PL-80211 Gdansk, Poland
[10] VU Univ Med Ctr VUMC, Canc Ctr Amsterdam, Dept Med Oncol, Amsterdam UMC, NL-1081 HV Amsterdam, Netherlands
[11] Brighton & Sussex Med Sch, Dept Med Educ, Brighton BN1 9PH, Sussex, England
[12] Queensland Univ Technol QUT, Sch Biomed Sci, Fac Hlth, Brisbane, Qld 4059, Australia
[13] Griffith Univ, Sch Med & Dent, Pathol, Gold Coast Campus, Gold Coast, Qld 4222, Australia
[14] Fdn Pisana Sci, AIRC Startup Unit, Canc Pharmacol Lab, I-56017 Pisa, Italy
关键词
machine learning; colorectal cancer; bioinformatics; biomarker; prognosis; FINGER PROTEIN MAZ; PROLIFERATION; PRRC2A;
D O I
10.3390/cancers15174300
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: Colorectal cancer (CRC) is a common cancer associated with poor outcomes, underscoring a need for the identification of novel prognostic and therapeutic targets to improve outcomes. This study aimed to identify genetic variants and differentially expressed genes (DEGs) using genome-wide DNA and RNA sequencing followed by validation in a large cohort of patients with CRC. Methods: Whole genome and gene expression profiling were used to identify DEGs and genetic alterations in 146 patients with CRC. Gene Ontology, Reactom, GSEA, and Human Disease Ontology were employed to study the biological process and pathways involved in CRC. Survival analysis on dysregulated genes in patients with CRC was conducted using Cox regression and Kaplan-Meier analysis. The STRING database was used to construct a protein-protein interaction (PPI) network. Moreover, candidate genes were subjected to ML-based analysis and the Receiver operating characteristic (ROC) curve. Subsequently, the expression of the identified genes was evaluated by Real-time PCR (RT-PCR) in another cohort of 64 patients with CRC. Gene variants affecting the regulation of candidate gene expressions were further validated followed by Whole Exome Sequencing (WES) in 15 patients with CRC. Results: A total of 3576 DEGs in the early stages of CRC and 2985 DEGs in the advanced stages of CRC were identified. ASPHD1 and ZBTB12 genes were identified as potential prognostic markers. Moreover, the combination of ASPHD and ZBTB12 genes was sensitive, and the two were considered specific markers, with an area under the curve (AUC) of 0.934, 1.00, and 0.986, respectively. The expression levels of these two genes were higher in patients with CRC. Moreover, our data identified two novel genetic variants-the rs925939730 variant in ASPHD1 and the rs1428982750 variant in ZBTB1-as being potentially involved in the regulation of gene expression. Conclusions: Our findings provide a proof of concept for the prognostic values of two novel genes-ASPHD1 and ZBTB12-and their associated variants (rs925939730 and rs1428982750) in CRC, supporting further functional analyses to evaluate the value of emerging biomarkers in colorectal cancer.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A novel machine learning-based immune prognostic signature for improving clinical outcomes and guiding therapy in colorectal cancer: an integrated bioinformatics and experimental study
    Zhao, Yuanchun
    Xun, Dexu
    Chen, Jiajia
    Qi, Xin
    BMC CANCER, 2025, 25 (01)
  • [2] Machine Learning-Based Colorectal Cancer Detection
    Blanes-Vidal, Victoria
    Baatrup, Gunnar
    Nadimi, Esmaeil S.
    PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 43 - 46
  • [3] WGCNA and Machine Learning-Based Integrative Bioinformatics Analysis for Identifying Key Genes of Colorectal Cancer
    Al Mehedi Hasan, Md.
    Maniruzzaman, Md.
    Shin, Jungpil
    IEEE ACCESS, 2024, 12 : 144350 - 144363
  • [4] A Machine Learning-Based Prognostic Predictor for Gastric Cancer
    Abdelwahed, Mohammed
    Geetha, Saroja Devi
    Ali, Amr
    Milkis, Dmitriy
    Ucar, Busra Uzun
    Madu, Chika
    Ucar, Ebubekir
    Sham, Sunder
    Rishi, Arvind
    Vitkovski, Taisia
    LABORATORY INVESTIGATION, 2024, 104 (03) : S1547 - S1548
  • [5] Machine Learning-Based Integrated Multiomics Characterization of Colorectal Cancer Reveals Distinctive Metabolic Signatures
    Zheng, Ran
    Su, Rui
    Fan, Yusi
    Xing, Fan
    Huang, Keke
    Yan, Fei
    Chen, Huanwen
    Liu, Botong
    Fang, Laiping
    Du, Yechao
    Zhou, Fengfeng
    Wang, Daguang
    Feng, Shouhua
    ANALYTICAL CHEMISTRY, 2024, 96 (21) : 8772 - 8781
  • [6] A machine learning-based approach to prognostic analysis of thoracic transplantations
    Delen, Dursun
    Oztekin, Asil
    Kong, Zhenyu
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 49 (01) : 33 - 42
  • [7] Machine learning-based prognostic and metastasis models of kidney cancer
    Zhang, Yuxiang
    Hong, Na
    Huang, Sida
    Wu, Jie
    Gao, Jianwei
    Xu, Zheng
    Zhang, Fubo
    Ma, Shaohui
    Liu, Ye
    Sun, Peiyuan
    Tang, Yanping
    Liu, Chun
    Shou, Jianzhong
    Chen, Meng
    CANCER INNOVATION, 2022, 1 (02): : 124 - 134
  • [8] Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning
    Hammad, Ahmed
    Elshaer, Mohamed
    Tang, Xiuwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 8997 - 9015
  • [9] Machine learning-based classifiers to predict metastasis in colorectal cancer patients
    Talebi, Raheleh
    Celis-Morales, Carlos A.
    Akbari, Abolfazl
    Talebi, Atefeh
    Borumandnia, Nasrin
    Pourhoseingholi, Mohamad Amin
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [10] Predictive machine learning-based integrated approach for DDoS detection and prevention
    Solomon Damena Kebede
    Basant Tiwari
    Vivek Tiwari
    Kamlesh Chandravanshi
    Multimedia Tools and Applications, 2022, 81 : 4185 - 4211