Nonisothermal Failure Envelopes of Strip Shallow Foundations Resting on Partially Saturated Clay Subjected to Combined Inclined and Eccentric Loadings

被引:18
|
作者
Chenari, Masoud Jamshidi [1 ]
Payan, Meghdad [1 ]
Ghasemi-Fare, Omid [2 ]
机构
[1] Univ Guilan, Dept Civil Engn, Fac Engn, Rasht 4199613776, Iran
[2] Univ Louisville, Dept Civil & Environm Engn, 132 Eastern Pkwy, Louisville, KY 40292 USA
关键词
Combined loading; Elevated temperature; Lower bound finite-element limit analysis; Nonisothermal; Second-order cone programming; Shallow foundation; Suction stress; BOUND LIMIT ANALYSIS; 3-DIMENSIONAL BEARING CAPACITY; UNSATURATED SOILS; FINITE-ELEMENTS; SHEAR-STRENGTH; MECHANICAL-BEHAVIOR; FOOTINGS; TEMPERATURE; SUCTION; SAND;
D O I
10.1061/(ASCE)GM.1943-5622.0002596
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Shallow foundations are commonly resting on partially saturated soil and are very likely to be exposed to severe variations of temperature. The degree of saturation and matric suction will be changed at the elevated temperatures, thus resulting in different hydromechanical behavior and a considerable variation in the imposed suction stress. In this study, the effect of temperature increase on the ultimate bearing capacity of strip shallow foundations resting on partially saturated clay layer subjected to vertical (V)-horizontal (H)-moment (M) combined loading is examined through a set of finite-element limit analyses (FELA) adopting lower bound theorems and second-order cone programming (SOCP). The unified effective stress for partially saturated soils is first incorporated into the soil yield function, considering the significant effect of temperature variations on suction stress by means of the well-established previously developed nonisothermal soil-water retention curve (SWRC) model. The equilibrium equations corresponding to the combined loading are also incorporated into the FELA formulations to account for the effects of inclined and eccentric loadings. Accordingly, the failure loci of obliquely and eccentrically loaded shallow foundations are presented for a wide range of temperatures. It is shown that with an increase of the temperature in the underlying unsaturated clay, the suction stress within the soil medium significantly rises, and thus, the failure wedges as well as the failure loci for both eccentric and inclined loadings substantially expand at elevated temperatures, revealing the considerably greater bearing capacity of the strip footing. The contact pressure beneath the foundation in all loading scenarios increases with an increase in the temperature of the underlying clay. This trend is much less pronounced at higher angles of load inclination, while it is barely affected by the load eccentricity. In addition, with an increase in the induced temperature and consequently the suction stress within the partially saturated clay beneath the foundation, the failure wedge expands, thereby resulting in an overall increase in the bearing capacity of the shallow foundation against vertical-horizontal-moment combined loading.
引用
收藏
页数:20
相关论文
共 3 条
  • [1] Effect of strength non-homogeneity on the shape of failure envelopes for combined loading of strip and circular foundations on clay
    Gourvenec, S
    Randolph, M
    GEOTECHNIQUE, 2003, 53 (06): : 575 - 586
  • [2] Numerical study on the bearing capacity of strip footing resting on partially saturated soil subjected to combined vertical-horizontal-moment loading
    Fathipour, Hessam
    Payan, Meghdad
    Siahmazgi, Amirhossein Safardoost
    Chenari, Reza Jamshidi
    Senetakis, Kostas
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2023, 27 (03) : 1317 - 1350
  • [3] Failure envelopes of large-diameter shallow buried bucket foundation in undrained saturated soft clay under combined loading conditions
    Liu, Run
    Wang, Lei
    Ding, Hong-Yan
    Lian, Ji-Jian
    Li, Bao-Ren
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2014, 36 (01): : 146 - 154