Data-driven and physics-informed approaches for improving the performance of dynamic models of fluid film bearings

被引:3
|
作者
Shutin, Denis [1 ]
Kazakov, Yuri [1 ]
Stebakov, Ivan [1 ]
Savin, Leonid [1 ]
机构
[1] Orel State Univ, Dept Mechatron Mech & Robot, Oryol, Russia
基金
俄罗斯科学基金会;
关键词
Fluid film bearings; Rotor dynamics; Numerical models; Machine learning; Data-driven models; Artificial neural networks; Physics-informed neural networks; LUBRICATION;
D O I
10.1016/j.triboint.2023.109136
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Conventional numerical models of fluid film bearings (FFB) typically require significant amounts of computations to achieve acceptable calculation accuracy. This may cause many inconveniences, especially for computationally expensive rotor dynamics tasks. The study addresses general issues in building synthetic data-driven dynamic FFB models using machine learning methods, focusing on artificial neural networks (ANNs). In the study, surrogate models predicting journal bearing forces were built using a variety of approaches, including single- and multi-component ANN-based models, as well as so-called physics-informed neural networks (PINN). The work presents a comparative analysis of the considered approaches, primarily in the context of rotor dynamics calculations. It includes an assessment of the accuracy and performance of considered models, as well as the time spent on their creation. The results show that all tested solutions outperform numerical methods by order of magnitude or more, but it is difficult to talk about the overwhelming advantage of any one approach over others. When choosing a methodology for building surrogate FFB models, one should proceed from the requirements for the model, the benefits and shortcomings of certain methods. The work gives an idea of their relationships, including the influence of key hyperparameters of the methods on the properties of the resulting models. The results can be useful both for traditional calculations in the area of rotor dynamics, and for relatively new problems in the rotor systems, such as predictive analytics and optimal design systems, predictive controllers of active components of rotary machines.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Physics-informed data-driven reduced-order models for Dynamic Induction Control
    Muscari, Claudia
    Schito, Paolo
    Vire, Axelle
    Zasso, Alberto
    van Wingerden, Jan-Willem
    IFAC PAPERSONLINE, 2023, 56 (02): : 8414 - 8419
  • [2] Physics-informed data-driven model for fluid flow in porous media
    Kazemi, Mohammad
    Takbiri-Borujeni, Ali
    Takbiri, Sam
    Kazemi, Arefeh
    COMPUTERS & FLUIDS, 2023, 264
  • [3] Regulating the development of accurate data-driven physics-informed deformation models
    Newman, Will
    Ghaboussi, Jamshid
    Insana, Michael
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [4] Physics-informed Data-driven Communication Performance Prediction for Underwater Vehicles
    Chitre, Mandar
    Li Kexin
    2022 SIXTH UNDERWATER COMMUNICATIONS AND NETWORKING CONFERENCE (UCOMMS), 2022,
  • [5] Physics-informed deep learning for data-driven solutions of computational fluid dynamics
    Solji Choi
    Ikhwan Jung
    Haeun Kim
    Jonggeol Na
    Jong Min Lee
    Korean Journal of Chemical Engineering, 2022, 39 : 515 - 528
  • [6] Physics-informed deep learning for data-driven solutions of computational fluid dynamics
    Choi, Solji
    Jung, Ikhwan
    Kim, Haeun
    Na, Jonggeol
    Lee, Jong Min
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 39 (03) : 515 - 528
  • [7] A physics-informed data-driven approach for consolidation analysis
    Zhang, Pin
    Yin, Zhen-Yu
    Sheil, Brian
    GEOTECHNIQUE, 2022, 74 (07): : 620 - 631
  • [8] Benchmarking physics-informed frameworks for data-driven hyperelasticity
    Vahidullah Taç
    Kevin Linka
    Francisco Sahli-Costabal
    Ellen Kuhl
    Adrian Buganza Tepole
    Computational Mechanics, 2024, 73 : 49 - 65
  • [9] Benchmarking physics-informed frameworks for data-driven hyperelasticity
    Tac, Vahidullah
    Linka, Kevin
    Sahli-Costabal, Francisco
    Kuhl, Ellen
    Tepole, Adrian Buganza
    COMPUTATIONAL MECHANICS, 2024, 73 (01) : 49 - 65
  • [10] Physics-Informed Data-Driven Autoregressive Nonlinear Filter
    Liu, Hanyu
    Sun, Xiucong
    Chen, Yuran
    Wang, Xinlong
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 846 - 850