Integrated surveillance of human respiratory viruses in addition to SARS-CoV-2 in a public testing facility in the Netherlands

被引:1
|
作者
Plantinga, N. L. [1 ]
van Lanschot, M. C. J. [2 ]
Raven, C. F. H. [2 ]
Schuurman, R. [1 ]
Rirash, A. F. [2 ]
van Deursen, B. [2 ]
Boland, G. J. [1 ]
Siksma, T. O. [1 ]
Fries, E. [1 ]
Mostert, M. [3 ]
Thijsen, S. F. T. [3 ]
Hofstra, L. M. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Med Microbiol, Utrecht, Netherlands
[2] Publ Hlth Serv Utrecht Reg, Dept Infect Dis, Utrecht, Netherlands
[3] Diakonessenhuis Utrecht, Dept Med Microbiol, Utrecht, Netherlands
关键词
Surveillance; Respiratory viruses; Public health testing facility; Sars-CoV-2; Influenzavirus; RS-virus;
D O I
10.1016/j.jcv.2022.105346
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: SARS-CoV-2 prevention measures impact the circulation of other respiratory viruses. Surveillance in the network of general practitioners is hampered by widespread testing for SARS-CoV-2 in public testing facilities.Objectives: To evaluate integrated community surveillance of SARS-CoV-2 and other respiratory viruses and describe epidemiological trends.Study design: Respiratory surveillance was set up within an existing SARS-CoV-2 public testing facility. Community-dwelling (a)symptomatic persons provided consent for completion of a questionnaire and additional testing on residual material from swabs taken for SARS-CoV-2 RT-PCR (Allplex Seegene). Daily, a random subset was tested for sixteen respiratory viruses by multiplex realtime PCRs (Seegene).Results: Between October 6th (week 40) 2021 and April 22nd (week 16) 2022, 3,969 subjects were tested. The weekly median age ranged from 23 to 39 years. The prevalence of respiratory symptoms ranged from 98.5% (week 40) to 27.4% (week 1). The prevalence of detection of any respiratory virus (including SARS-CoV-2), ranged from 19.6% in week 49 to 75.3% in week 14. SARS-CoV-2 prevalence ranged from 2.2% (week 40) to 63.3% (week 14). Overall, SARS-CoV-2 was detected most frequently (27.3%), followed by rhinoviruses (14.6%, range 3.5-47.8%) and seasonal coronaviruses (3.7%, range 0-10.4%, mostly 229E and OC43). Influenzavirus was detected in 3.0% of participants from week 6 onwards.Conclusions: Integrated respiratory viral surveillance within public testing facilities is feasible and informative. Prevalences may be affected by changes in SARS-CoV-2 prevention and testing policies. Population character-istics help to interpret trends over time. Integrated surveillance may inform policymakers and hospitals for adequate response measures during respiratory seasons.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Integrated sentinel surveillance of influenza, SARS-CoV-2, RSV and respiratory viruses in Serbia
    Dimitrijevic, D.
    Jovanovic, V
    Milinkovic, M.
    Protic, J.
    Grego, E.
    Maris, S.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2024, 34
  • [2] Beyond SARS-CoV-2: epidemiological surveillance of respiratory viruses in Jalisco, Mexico
    Pedroza-Uribe, Isaac Murisi
    Magana, Natali Vega
    Munoz-Valle, Jose Francisco
    Pena-Rodriguez, Marcela
    Carranza-Aranda, Ahtziri Socorro
    Sanchez-Sanchez, Rocio
    Venancio-Landeros, Alberto Anthony
    Garcia-Gonzalez, Octavio Patricio
    Zavala-Mejia, Jacob Jecsan
    Ramos-Solano, Moises
    Viera-Segura, Oliver
    Garcia-Chagollan, Mariel
    FRONTIERS IN PUBLIC HEALTH, 2024, 11
  • [3] SARS-CoV-2 and Other Respiratory Viruses in Human Olfactory Pathophysiology
    Wade, Serigne Fallou
    Diouara, Abou Abdallah Malick
    Ngom, Babacar
    Thiam, Fatou
    Dia, Ndongo
    MICROORGANISMS, 2024, 12 (03)
  • [4] Wastewater Surveillance of SARS-CoV-2 RNA in a Prison Facility
    Thakali, Ocean
    Shahin, Shalina
    Sherchan, Samendra P.
    WATER, 2024, 16 (04)
  • [5] SARS-CoV-2 surveillance for a non-human primate breeding research facility
    Yee, JoAnn L.
    Van Rompay, Koen K. A.
    Carpenter, Amanda B.
    Nham, Peter B.
    Halley, Bryson M.
    Iyer, Smita S.
    Hartigan-O'Connor, Dennis J.
    Miller, Christopher J.
    Roberts, Jeffrey A.
    JOURNAL OF MEDICAL PRIMATOLOGY, 2020, 49 (06) : 322 - 331
  • [6] Biosensor detection of airborne respiratory viruses such as SARS-CoV-2
    Breshears, Lane E.
    Nguyen, Brandon T.
    Robles, Samantha Mata
    Wu, Lillian
    Yoon, Jeong-Yeol
    SLAS TECHNOLOGY, 2022, 27 (01): : 4 - 17
  • [7] Durability of Immunity to SARS-CoV-2 and Other Respiratory Viruses
    Siggins, Matthew K.
    Thwaites, Ryan S.
    Openshaw, Peter J. M.
    TRENDS IN MICROBIOLOGY, 2021, 29 (07) : 648 - 662
  • [8] Admission diagnostics for SARS-CoV-2 and other respiratory viruses
    Cimolai, Nevio
    ACTA PAEDIATRICA, 2024, 113 (07) : 1732 - 1733
  • [9] LABORATORY PLATFORM FOR MONITORING SARS-CoV-2 BASED ON SURVEILLANCE OF INFLUENZAAND OTHER RESPIRATORY VIRUSES IN PERU
    Palacios-Salvatierra, Rosa
    Huaringa-Nunez, Maribel
    Lope-Pari, Priscila
    Balbuena-Torres, Johanna
    Rojas-Serrano, Nancy
    REVISTA PERUANA DE MEDICINA EXPERIMENTAL Y SALUD PUBLICA, 2022, 39 (01): : 104 - 110
  • [10] Pooled Testing for Surveillance of SARS-CoV-2 in Asymptomatic Individuals
    Das, Sanchita
    Lau, Anna F.
    Youn, Jung-Ho
    Khil, Pavel P.
    Zelazny, Adrian M.
    Frank, Karen M.
    JOURNAL OF CLINICAL VIROLOGY, 2020, 132