The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists. Direct functionalisation of 5-methylcytosine would improve the detection and study of this epigenetic feature. We report a xanthone-photosensitised process that introduces a 4-pyridine modification at a C(sp(3))-H bond in the methyl group of 5-methylcytosine. We propose a reaction mechanism for this type of reaction based on density functional calculations and apply transition state analysis to rationalise differences in observed reaction efficiencies between cyanopyridine derivatives. The reaction is initiated by single electron oxidation of 5-methylcytosine followed by deprotonation to generate the methyl group radical. Cross coupling of the methyl radical with 4-cyanopyridine installs a 4-pyridine label at 5-methylcytosine. We demonstrate use of the pyridination reaction to enrich 5-methylcytosine-containing ribonucleic acid.
机构:
INDIAN INST SCI,INDIAN COUNCIL MED RES,CTR GENET & CELL BIOL,BANGALORE 560012,KARNATAKA,INDIAINDIAN INST SCI,INDIAN COUNCIL MED RES,CTR GENET & CELL BIOL,BANGALORE 560012,KARNATAKA,INDIA
PADMAJA, N
论文数: 引用数:
h-index:
机构:
RAMAKUMAR, S
VISWAMITRA, MA
论文数: 0引用数: 0
h-index: 0
机构:
INDIAN INST SCI,INDIAN COUNCIL MED RES,CTR GENET & CELL BIOL,BANGALORE 560012,KARNATAKA,INDIAINDIAN INST SCI,INDIAN COUNCIL MED RES,CTR GENET & CELL BIOL,BANGALORE 560012,KARNATAKA,INDIA