Estimating Measurement Error in Longitudinal Data Using the Longitudinal MultiTrait MultiError Approach

被引:2
|
作者
Cernat, Alexandru [1 ,3 ]
Oberski, Daniel [2 ]
机构
[1] Univ Manchester, Manchester, England
[2] Univ Utrecht, Utrecht, Netherlands
[3] Univ Manchester, Social Stat, Manchester M13 9PL, England
关键词
Longitudinal data; measurement error; multitrait multimethod; social desirability; survey research; SOCIAL-DESIRABILITY BIAS; MULTIMETHOD; ACQUIESCENCE; STABILITY; VALIDITY; MODELS; PERSONALITY; LIKELIHOOD; QUALITY; ORDER;
D O I
10.1080/10705511.2022.2145961
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Longitudinal data makes it possible to investigate change in time and its causes. While this type of data is getting more popular there is limited knowledge regarding the measurement errors involved, their stability in time and how they bias estimates of change. In this paper we apply a new method to estimate multiple types of errors concurrently, called the MultiTrait MultiError approach, to longitudinal data. This method uses a combination of experimental design and latent variable modelling to disentangle random error, social desirability, acquiescence and method effect. Using data collection from the Understanding Society Innovation Panel in the UK we investigate the stability of these measurement errors in three waves. Results show that while social desirability exhibits very high stability this is very low for method effects. Implications for social research is discussed.
引用
收藏
页码:592 / 603
页数:12
相关论文
共 50 条
  • [1] Estimating reliability statistics and measurement error variances using instrumental variables with longitudinal data
    Goldstein, Harvey
    Haynes, Michele
    Leckie, George
    Phuong Tran
    LONGITUDINAL AND LIFE COURSE STUDIES, 2020, 11 (03): : 289 - 306
  • [2] Measurement Error in Longitudinal Data
    Blumberg, Carol Joyce
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (03) : 658 - 659
  • [3] Measurement Error in Longitudinal Data
    Blumberg, Carol Joyce
    INTERNATIONAL STATISTICAL REVIEW, 2021,
  • [4] Estimating stochastic survey response errors using the multitrait-multierror model
    Cernat, Alexandru
    Oberski, Daniel L.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 (01) : 134 - 155
  • [5] Expected estimating equations for missing data, measurement error, and misclassification, with application to longitudinal nonignorable missing data
    Wang, C. Y.
    Huang, Yijian
    Chao, Edward C.
    Jeffcoat, Marjorie K.
    BIOMETRICS, 2008, 64 (01) : 85 - 95
  • [6] Analysis of longitudinal data with covariate measurement error and missing responses: An improved unbiased estimating equation
    Lin, Huiming
    Qin, Guoyou
    Zhang, Jiajia
    Zhu, Zhongyi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 121 : 104 - 112
  • [7] Logistic modelling of longitudinal survey data with measurement error
    Skinner, CJ
    STATISTICA SINICA, 1998, 8 (04) : 1045 - 1058
  • [8] Bayesian Estimation of Measurement Error Models with Longitudinal Data
    Li, Dewang
    Qiu, Meilan
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ELECTRONIC INDUSTRY AND AUTOMATION (EIA 2017), 2017, 145 : 242 - 245
  • [9] An estimating equation approach to dimension reduction for longitudinal data
    Xu, Kelin
    Guo, Wensheng
    Xiong, Momiao
    Zhu, Liping
    Jin, Li
    BIOMETRIKA, 2016, 103 (01) : 189 - 203
  • [10] MODELS FOR LONGITUDINAL DATA - A GENERALIZED ESTIMATING EQUATION APPROACH
    ZEGER, SL
    LIANG, KY
    ALBERT, PS
    BIOMETRICS, 1988, 44 (04) : 1049 - 1060