Garlic bulb classification by combining Raman spectroscopy and machine learning

被引:3
|
作者
Wang, Zhixin [1 ]
Li, Chenming [1 ]
Wang, Zhong [1 ]
Li, Yuee [1 ]
Hu, Bin [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
关键词
Garlic bulb; Raman spectroscopy; Multi-classification models; Robustness analysis; Origin identification; ALLIUM-SATIVUM-L; SPECTRA; GLUCOSE; ORIGIN; ONION;
D O I
10.1016/j.vibspec.2023.103509
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The purpose of this study was to demonstrate the utility of combining Raman spectroscopy with machine learning techniques for achieving origin traceability of five garlic bulb species. We collected Raman spectra of garlic bulbs and Raman bands are assigned. After pre-processing, the wavenumbers and intensities of distinct Raman peaks are extracted as the input data for developing the classification model. Our trained model presents an accuracy of 98.97%, a precision of 98.92% and a sensitivity of 98.86%. The results indicate that the artificial prior feature extraction strategy prevents over-fitting due to external variables and improves greatly model accuracy. This study offers a novel classification and origin identification scheme for plant bulbs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Differentiation of Plastics by Combining Raman Spectroscopy and Machine Learning
    Yang, Y.
    Zhang, W.
    Wang, Zh
    Li, Y.
    JOURNAL OF APPLIED SPECTROSCOPY, 2022, 89 (04) : 790 - 798
  • [2] Differentiation of Plastics by Combining Raman Spectroscopy and Machine Learning
    Y. Yang
    W. Zhang
    Zh. Wang
    Y. Li
    Journal of Applied Spectroscopy, 2022, 89 : 790 - 798
  • [3] Classification of Garlic Varieties with Fluorescent Spectroscopy Using Machine Learning
    Yasar, Ali
    Slavova, Vanya
    Genova, Stefka
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2024, 18 (04): : 523 - 531
  • [4] Raman spectroscopy and machine learning for the classification of breast cancers
    Zhang, Lihao
    Li, Chengjian
    Peng, Di
    Yi, Xiaofei
    He, Shuai
    Liu, Fengxiang
    Zheng, Xiangtai
    Huang, Wei E.
    Zhao, Liang
    Huang, Xia
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 264
  • [5] Combining optical spectroscopy and machine learning to improve food classification
    Magnus, I.
    Virte, M.
    Thienpont, H.
    Smeesters, L.
    FOOD CONTROL, 2021, 130
  • [6] Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma
    Huang, Wenhua
    Shang, Qixin
    Xiao, Xin
    Zhang, Hanlu
    Gu, Yimin
    Yang, Lin
    Shi, Guidong
    Yang, Yushang
    Hu, Yang
    Yuan, Yong
    Ji, Aifang
    Chen, Longqi
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 281
  • [7] Classification and Recognition of Lilies Based on Raman Spectroscopy and Machine Learning
    Wang Zhi-xin
    Wang Hui-hui
    Zhang Wen-bo
    Wang Zhong
    Li Yue-e
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (01) : 183 - 189
  • [8] Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning
    Wurm, Lennard M.
    Fischer, Bjoern
    Neuschmelting, Volker
    Reinecke, David
    Fischer, Igor
    Croner, Roland S.
    Goldbrunner, Roland
    Hacker, Michael C.
    Dybas, Jakub
    Kahlert, Ulf D.
    ANALYST, 2023, 148 (23) : 6109 - 6119
  • [9] Combining Raman spectroscopy and machine learning to assist early diagnosis of gastric cancer
    Li, Chenming
    Liu, Shasha
    Zhang, Qian
    Wan, Dongdong
    Shen, Rong
    Wang, Zhong
    Li, Yuee
    Hu, Bin
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 287
  • [10] Automatic classification of Candida species using Raman spectroscopy and machine learning
    Gabriela Fernandez-Manteca, Maria
    Ocampo-Sosa, Alain A.
    Ruiz de Alegria-Puig, Carlos
    Pia Roiz, Maria
    Rodriguez-Grande, Jorge
    Madrazo, Fidel
    Calvo, Jorge
    Rodriguez-Cobo, Luis
    Miguel Lopez-Higuera, Jose
    Carmen Farinas, Maria
    Cobo, Adolfo
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 290