Machine learning-based prediction of disability risk in geriatric patients with hypertension for different time intervals

被引:5
|
作者
Xiang, Chaoyi [1 ,3 ]
Wu, Yafei [1 ,2 ,3 ]
Jia, Maoni [1 ,3 ]
Fang, Ya [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Sch Publ Hlth, State Key Lab Mol Vaccine & Mol Diag, Xiangan Nan Rd, Xiamen 361102, Fujian, Peoples R China
[2] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Xiamen, Peoples R China
[3] Xiamen Univ, Sch Publ Hlth, Key Lab Hlth Technol Assessment Fujian Prov, Xiamen, Peoples R China
关键词
Hypertension; Elderly; Disability; Machine learning; Interpretability; REGRESSION; TRENDS; LIFE; AGE;
D O I
10.1016/j.archger.2022.104835
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Background: The risk of disability in older adults with hypertension is substantially high, and prediction of disability risk is crucial for subsequent management. This study aimed to construct prediction models of disability risk for geriatric patients with hypertension at different time intervals, as well as to assess the important predictors and influencing factors of disability. Methods: This study collected data from the Chinese Longitudinal Healthy Longevity and Happy Family Study. There were 1576, 1083 and 506 hypertension patients aged 65+ in 2008 who were free of disability at baseline and had completed outcome information in follow-up of 2008-2012, 2008-2014, 2008-2018. We built five machine learning (ML) models to predict the disability risk. The classic statistical logistic regression (classic-LR) and shapley additive explanations (SHAP) was further introduced to explore possible causal factors and interpret the optimal models' decisions. Results: Among the five ML models, logistic regression, extreme gradient boosting, and deep neural network were the optimal models for detecting 4-, 6-, and 10-year disability risk with their AUC-ROCs reached 0.759, 0.728, 0.694 respectively. The classic-LR revealed potential casual factors for disability and the results of SHAP demonstrated important features for risk prediction, reinforcing the trust of decision makers towards black-box models. Conclusion: The optimal models hold promise for screening out hypertensive old adults at high risk of disability to implement further targeted intervention and the identified key factors may be of additional value in analyzing the causal mechanisms of disability, thereby providing basis to practical application.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Machine learning-based quantitative trading strategies across different time intervals in the American market
    Wang, Yimeng
    Yan, Keyue
    QUANTITATIVE FINANCE AND ECONOMICS, 2023, 7 (04): : 569 - 594
  • [2] Machine Learning-Based Mortality Prediction of Patients at Risk During Hospital Admission
    Trentino, Kevin M.
    Schwarzbauer, Karin
    Mitterecker, Andreas
    Hofmann, Axel
    Lloyd, Adam
    Leahy, Michael F.
    Tschoellitsch, Thomas
    Bock, Carl
    Hochreiter, Sepp
    Meier, Jens
    JOURNAL OF PATIENT SAFETY, 2022, 18 (05) : 494 - 498
  • [3] Hypertension risk prediction models for patients with diabetes based on machine learning approaches
    Zhao, Yuxue
    Han, Jiashu
    Hu, Xinlin
    Hu, Bo
    Zhu, Hui
    Wang, Yanlong
    Zhu, Xiuli
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 59085 - 59102
  • [4] A machine learning-based diabetes risk prediction modeling study
    Ming, Jiexiu
    Xu, Junyi
    Zhang, Miaomiao
    Li, Ningyu
    Yan, Xu
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 363 - 369
  • [5] A machine learning-based universal outbreak risk prediction tool
    Zhang, Tianyu
    Rabhi, Fethi
    Chen, Xin
    Paik, Hye-young
    Macintyre, Chandini Raina
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [6] Machine Learning-Based Risk Prediction of Discharge Status for Sepsis
    Cai, Kaida
    Lou, Yuqing
    Wang, Zhengyan
    Yang, Xiaofang
    Zhao, Xin
    ENTROPY, 2024, 26 (08)
  • [7] Machine Learning-Based prediction of Post-Treatment ambulatory blood pressure in patients with hypertension
    Hae, Hyeonyong
    Kang, Soo-Jin
    Kim, Tae Oh
    Lee, Pil Hyung
    Lee, Seung-Whan
    Kim, Young-Hak
    Lee, Cheol Whan
    Park, Seong-Wook
    BLOOD PRESSURE, 2023, 32 (01)
  • [8] Machine Learning-Based Aviation Meteorological Risk Prediction Model
    Miao, Shaohui
    Du, Jiaxing
    SPIN, 2025,
  • [9] Identification of Risk Factors and Machine Learning-Based Prediction Models for Knee Osteoarthritis Patients
    Kokkotis, Christos
    Moustakidis, Serafeim
    Giakas, Giannis
    Tsaopoulos, Dimitrios
    APPLIED SCIENCES-BASEL, 2020, 10 (19):
  • [10] Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure
    Wang, Qi
    Li, Bin
    Chen, Kangyu
    Yu, Fei
    Su, Hao
    Hu, Kai
    Liu, Zhiquan
    Wu, Guohong
    Yan, Ji
    Su, Guohai
    ESC HEART FAILURE, 2022, 8 (06): : 5363 - 5371