Spatiotemporal characteristic analysis of PM2.5 in central China and modeling of driving factors based on MGWR: a case study of Henan Province

被引:4
|
作者
Wang, Hua [1 ]
Zhang, Mingcheng [1 ]
Niu, Jiqiang [2 ]
Zheng, Xiaoyun [3 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Comp & Commun Engn, Zhengzhou, Peoples R China
[2] Xinyang Normal Univ, Key Lab Synergist Prevent Water & Soil Environm Po, Xinyang, Peoples R China
[3] Minist Nat Resources, Key Lab Urban Land Resources Monitoring & Simulat, Shenzhen, Peoples R China
关键词
PM2.5; spatiotemporal variation; MGWR; Central China; air quality; SOCIOECONOMIC-FACTORS; POLLUTION; PATTERNS; IMPACT; LEVEL;
D O I
10.3389/fpubh.2023.1295468
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Since the start of the twenty-first century, China's economy has grown at a high or moderate rate, and air pollution has become increasingly severe. The study was conducted using data from remote sensing observations between 1998 and 2019, employing the standard deviation ellipse model and spatial autocorrelation analysis, to explore the spatiotemporal distribution characteristics of PM2.5 in Henan Province. Additionally, a multiscale geographically weighted regression model (MGWR) was applied to explore the impact of 12 driving factors (e.g., mean surface temperature and CO2 emissions) on PM2.5 concentration. The research revealed that (1) Over a period of 22 years, the yearly mean PM2.5 concentrations in Henan Province demonstrated a trend resembling the shape of the letter "M", and the general trend observed in Henan Province demonstrated that the spatial center of gravity of PM2.5 concentrations shifted toward the north. (2) Distinct spatial clustering patterns of PM2.5 were observed in Henan Province, with the northern region showing a primary concentration of spatial hot spots, while the western and southern areas were predominantly characterized as cold spots. (3) MGWR is more effective than GWR in unveiling the spatial heterogeneity of influencing factors at various scales, thereby making it a more appropriate approach for investigating the driving mechanisms behind PM2.5 concentration. (4) The results acquired from the MGWR model indicate that there are varying degrees of spatial heterogeneity in the effects of various factors on PM2.5 concentration. To summarize the above conclusions, the management of the atmospheric environment in Henan Province still has a long way to go, and the formulation of relevant policies should be adapted to local conditions, taking into account the spatial scale effect of the impact of different influencing factors on PM2.5.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] ANALYSIS OF THE SPATIOTEMPORAL EVOLUTION CHARACTERISTICS AND SPATIAL HETEROGENEITY DRIVING MECHANISMS OF REGIONAL PM2.5 BASED ON MGWR: A CASE STUDY IN CENTRAL CHINA
    Lu, B.
    Zhang, M. C.
    Wang, Y. W.
    Wang, K.
    Li, X. F.
    Wang, H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2025, 23 (01): : 359 - 385
  • [2] The Characteristics of Spatiotemporal Distribution of PM2.5 in Henan Province, China
    Wang, Mingshi
    Cao, Jingli
    Gui, Chenlu
    Xu, Zhaofeng
    Song, Dangyu
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2017, 26 (06): : 2785 - 2791
  • [3] Spatiotemporal Evolution of PM2.5 Concentrations and Source Apportionment in Henan Province, China
    Yao, Rongpeng
    Li, Zhiguo
    Zhang, Yulun
    Wang, Jiajia
    Zhang, Songmei
    Xu, Huidao
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2021, 30 (05): : 4815 - 4826
  • [4] Spatiotemporal Distribution Characteristics of PM2.5 Pollution and the Influential Meteorological Factors in the Henan Province, China, 2021
    Liu, Xinzhan
    Yang, Ling
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2023, 32 (06): : 5211 - 5225
  • [5] Spatiotemporal dynamics of groundwater in Henan Province, Central China and their driving factors
    Cai, Panli
    Li, Runkui
    Guo, Jingxian
    Xiao, Zhen
    Fu, Haiyu
    Guo, Tongze
    Wang, Tianyi
    Zhang, Xiaoping
    Song, Xianfeng
    ECOLOGICAL INDICATORS, 2024, 166
  • [6] DYNAMIC COMPLEX NETWORK ANALYSIS OF PM2.5 IN HENAN PROVINCE OF CHINA
    Liu, L.
    Li, H.
    Li, W. W.
    Sui, Q. L.
    Zhu, Y. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2022, 20 (04): : 3033 - 3055
  • [7] Detection of PM2.5 spatiotemporal patterns and driving factors in urban agglomerations in China
    Wu, Shuaiwen
    Li, Hengkai
    He, Yonglan
    Zhou, Yanbing
    ATMOSPHERIC POLLUTION RESEARCH, 2023, 14 (10)
  • [8] Spatiotemporal Variations and Influencing Factors Analysis of PM2.5 Concentrations in Jilin Province, Northeast China
    Wen Xin
    Zhang Pingyu
    Liu Daqian
    CHINESE GEOGRAPHICAL SCIENCE, 2018, 28 (05) : 810 - 822
  • [9] Spatiotemporal Variations and Influencing Factors Analysis of PM2.5 Concentrations in Jilin Province, Northeast China
    Xin Wen
    Pingyu Zhang
    Daqian Liu
    Chinese Geographical Science, 2018, 28 : 810 - 822
  • [10] Spatiotemporal Variations and Influencing Factors Analysis of PM2.5 Concentrations in Jilin Province,Northeast China
    WEN Xin
    ZHANG Pingyu
    LIU Daqian
    Chinese Geographical Science, 2018, (05) : 810 - 822