An improved method for quantum matrix multiplication

被引:3
|
作者
Nghiem, Nhat A. A. [1 ]
Wei, Tzu-Chieh [1 ,2 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
关键词
Compendex;
D O I
10.1007/s11128-023-04054-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following the celebrated quantum algorithm for solving linear equations (so-called HHL algorithm), Childs et al. (SIAM J Comput 46:1920-1950, 2017) provided an approach to solve a linear system of equations with exponentially improved dependence on precision. In this note, we aim to complement such a result for applying a matrix to some quantum state, based upon their Chebyshev polynomial approach. A few examples that motivate this application are included, and we further discuss an application of this improved matrix application algorithm explicitly with an efficient quantum procedure.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] An improved method for quantum matrix multiplication
    Nhat A. Nghiem
    Tzu-Chieh Wei
    Quantum Information Processing, 22
  • [2] Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method
    Bessant, Y. R. Annie
    Jency, J. Grace
    Sagayam, K. Martin
    Jone, A. Amir Anton
    Pandey, Digvijay
    Pandey, Binay Kumar
    CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2023, 5 (02) : 102 - 115
  • [3] Improved parallel matrix multiplication using Strassen and Urdhvatiryagbhyam method
    Y. R. Annie Bessant
    J. Grace Jency
    K. Martin Sagayam
    A. Amir Anton Jone
    Digvijay Pandey
    Binay Kumar Pandey
    CCF Transactions on High Performance Computing, 2023, 5 : 102 - 115
  • [4] AN IMPROVED ALGORITHM FOR BOOLEAN MATRIX MULTIPLICATION
    SANTORO, N
    URRUTIA, J
    COMPUTING, 1986, 36 (04) : 375 - 382
  • [5] Improved bound for complexity of matrix multiplication
    Davie, A. M.
    Stothers, A. J.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (02) : 351 - 369
  • [6] Quantum Subroutine for Efficient Matrix Multiplication
    Bernasconi, Anna
    Berti, Alessandro
    del Corso, Gianna Maria
    Poggiali, Alessandro
    IEEE ACCESS, 2024, 12 : 116274 - 116284
  • [7] Quantum hyperparallel algorithm for matrix multiplication
    Xin-Ding Zhang
    Xiao-Ming Zhang
    Zheng-Yuan Xue
    Scientific Reports, 6
  • [8] Quantum hyperparallel algorithm for matrix multiplication
    Zhang, Xin-Ding
    Zhang, Xiao-Ming
    Xue, Zheng-Yuan
    SCIENTIFIC REPORTS, 2016, 6
  • [9] An Improved Combinatorial Algorithm for Boolean Matrix Multiplication
    Yu, Huacheng
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 1094 - 1105
  • [10] An improved combinatorial algorithm for Boolean matrix multiplication
    Yu, Huacheng
    INFORMATION AND COMPUTATION, 2018, 261 : 240 - 247