Nonuniform difference schemes for multi-term and distributed-order fractional parabolic equations with fractional Laplacian

被引:16
|
作者
Fardi, M. [1 ]
Zaky, M. A. [2 ]
Hendy, A. S. [3 ,4 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Appl Math, POB 115, Shahrekord, Iran
[2] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
[4] Benha Univ, Fac Sci, Dept Math, Banha 13511, Egypt
关键词
Multi-term fractional derivative; Distributed fractional derivative; Fractional Laplacian; Non-uniform mesh; Convergence and stability estimates; NUMERICAL APPROXIMATION; CONVOLUTION QUADRATURE; DIFFUSION-EQUATIONS; ERROR ESTIMATE;
D O I
10.1016/j.matcom.2022.12.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the multi-term temporal fractional order and temporal distributed-order parabolic equations with fractional Laplacian are numerically investigated. Several unconditional stable difference schemes based on non-uniform meshes for solving these differential equations are provided. We find that the constructed nonuniform difference schemes are convergent and it has been shown that the temporal convergence rate is faster and more accurate compared to the uniform difference schemes in case of nonsmooth solutions with respect to time. Some numerical examples are given to verify the theoretical findings. (c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:614 / 635
页数:22
相关论文
共 50 条
  • [1] The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations
    Gao, Guang-hua
    Alikhanov, Anatoly A.
    Sun, Zhi-zhong
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (01) : 93 - 121
  • [2] The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations
    Guang-hua Gao
    Anatoly A. Alikhanov
    Zhi-zhong Sun
    Journal of Scientific Computing, 2017, 73 : 93 - 121
  • [3] Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations
    Guang-hua Gao
    Zhi-zhong Sun
    Numerical Algorithms, 2017, 74 : 675 - 697
  • [4] Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    NUMERICAL ALGORITHMS, 2017, 74 (03) : 675 - 697
  • [5] FAST SECOND-ORDER ACCURATE DIFFERENCE SCHEMES FOR TIME DISTRIBUTED-ORDER AND RIESZ SPACE FRACTIONAL DIFFUSION EQUATIONS
    Jian, Huanyan
    Huang, Tingzhu
    Zhao, Xile
    Zhao, Yongliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (04): : 1359 - 1392
  • [6] Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 1281 - 1312
  • [7] Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations
    Guang-hua Gao
    Zhi-zhong Sun
    Journal of Scientific Computing, 2016, 66 : 1281 - 1312
  • [8] Distributed-order time-fractional wave equations
    Frederik Broucke
    Ljubica Oparnica
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [9] Distributed-order time-fractional wave equations
    Broucke, Frederik
    Oparnica, Ljubica
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [10] Multi-term fractional differential equations, multi-order fractional differential systems and their numerical solution
    GNS Gesellschaft für numerische Simulation mbH, Am Gauberg 2, 38114 Braunschweig, Germany
    不详
    J. Eur. Syst. Autom., 2008, 6-8 (665-676):