Composition and commutator of pseudo-differential operators in the framework of zero-order Mehler-Fock transform domain

被引:0
|
作者
Verma, Sandeep Kumar [1 ,2 ]
Prasad, Akhilesh [1 ]
机构
[1] Indian Inst Technol ISM, Dept Math & Comp, Dhanbad 826004, Jharkhand, India
[2] SRM Univ AP, Dept Math, Amaravati 522503, Andhra Pradesh, India
来源
JOURNAL OF ANALYSIS | 2023年 / 31卷 / 03期
关键词
Pseudo-differential operator; Mehler-Fock transform; Legendre function; CONVOLUTION;
D O I
10.1007/s41478-022-00531-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the boundedness and continuity of the pseudo-differential operator associated with the zero-order Mehler-Fock transform in Lebesgue space. We introduce the two versions of pseudo-differential operators P(u, A(u)) and Q(u, A(u)) involving the symbol class K and obtain their estimates in Lebesgue spaces. Further, we study the adjoint, composition, and commutator of the pseudo-differential operators in Hilbert space and obtain the boundedness of the commutator operator.
引用
收藏
页码:1753 / 1769
页数:17
相关论文
共 17 条
  • [1] Composition and commutator of pseudo-differential operators in the framework of zero-order Mehler–Fock transform domain
    Sandeep Kumar Verma
    Akhilesh Prasad
    The Journal of Analysis, 2023, 31 : 1753 - 1769
  • [2] The convolution for zero-order Mehler-Fock transform and pseudo-differential operator
    Prasad, Akhilesh
    Verma, S. K.
    Mandal, U. K.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (03) : 189 - 206
  • [3] Product of Pseudo-Differential Operators Associated with Zero Order Mehler-Fock Transform
    Verma S.K.
    Prasad A.
    International Journal of Applied and Computational Mathematics, 2022, 8 (5)
  • [4] The order Mehler-Fock transform and allied pseudo-differential operator
    Prasad, Akhilesh
    Mandal, U. K.
    Ranjan, Sudhanshu
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025, 36 (03) : 163 - 175
  • [5] Continuous wavelet transform associated with zero-order Mehler-Fock transform and its composition
    Prasad, Akhilesh
    Verma, S. K.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (06)
  • [6] ZERO-ORDER MEHLER-FOCK TRANSFORM AND SOBOLEV-TYPE SPACE
    Prasad, Akhilesh
    Mandal, U. K.
    Verma, S. K.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 761 - 775
  • [7] Heat Kernel in the Framework of Zero Order Mehler-Fock Transform
    Prasad, Akhilesh
    Verma, Sandeep Kumar
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (07) : 3235 - 3249
  • [8] Localization Operators and Scalogram in the Framework of Mehler-Fock Wavelet Transform
    Dades, Abdelaali
    Tyr, Othman
    Daher, Radouan
    Fantasse, Yassine
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (08)
  • [9] Heat Kernel in the Framework of Zero Order Mehler–Fock Transform
    Akhilesh Prasad
    Sandeep Kumar Verma
    Complex Analysis and Operator Theory, 2019, 13 : 3235 - 3249
  • [10] The Mehler-Fock-Clifford Transform and Pseudo-Differential Operator on Function Spaces
    Prasad, Akhilesh
    Verma, S. K.
    FILOMAT, 2019, 33 (08) : 2457 - 2469