A robust integrated multi-strategy bus control system via deep reinforcement learning

被引:4
|
作者
Nie, Qinghui [1 ]
Ou, Jishun [1 ]
Zhang, Haiyang [1 ]
Lu, Jiawei [2 ]
Li, Shen [3 ]
Shi, Haotian [4 ,5 ]
机构
[1] Yangzhou Univ, Coll Architectural Sci & Engn, Yangzhou, Peoples R China
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA USA
[3] Tsinghua Univ, Dept Civil Engn, Beijing, Peoples R China
[4] Univ Wisconsin Madison, Dept Civil & Environm Engn, Madison, WI 53706 USA
[5] Tongji Univ, Coll Transportat Engn, Shanghai, Peoples R China
基金
国家重点研发计划;
关键词
Bus control; Bus bunching; Connected and autonomous vehicle; Deep reinforcement learning; Signalized corridor; Multiple control strategies; RELIABILITY; TIME; MODEL;
D O I
10.1016/j.engappai.2024.107986
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An efficient urban bus control system has the potential to significantly reduce travel delays and streamline the allocation of transportation resources, thereby offering enhanced and user-friendly transit services to passengers. However, bus operation efficiency can be impacted by bus bunching, a problem originating from uncertain travel times between stops and time-varying passenger demand rates. This problem is notably exacerbated when the bus system operates along a signalized corridor in the face of unpredictable travel demand. To mitigate this challenge, we introduce a multi-strategy fusion approach for the longitudinal control of connected and automated buses. The approach is driven by a physics-informed deep reinforcement learning (DRL) algorithm and takes into account a variety of traffic conditions along urban signalized corridors. Taking advantage of connected and autonomous vehicle (CAV) technology, the proposed approach can leverage real-time information regarding bus operating conditions and road traffic environment. By integrating the aforementioned information into the DRL-based bus control framework, our designed physics-informed DRL state fusion approach and reward function efficiently embed prior physics and leverage the merits of equilibrium and consensus concepts from control theory. This integration enables the framework to learn and adapt multiple control strategies to effectively manage complex traffic conditions and fluctuating passenger demands. Three control variables, i.e., dwell time at stops, speed between stations, and signal priority, are formulated to minimize travel duration and ensure bus stability with the aim of avoiding bus bunching. We present simulation results to validate the effectiveness of the proposed approach, underlining its superior performance when subjected to sensitivity analysis, specifically considering factors such as traffic volume, desired speed, and traffic signal conditions.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A multi-strategy particle swarm optimization framework based on deep reinforcement learning
    Hou, Leyong
    Fan, Debin
    Cheng, Junjie
    Wu, Honglian
    Peng, Hu
    Deng, Changshou
    2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,
  • [2] A distributed deep reinforcement learning-based integrated dynamic bus control system in a connected environment
    Shi, Haotian
    Nie, Qinghui
    Fu, Sicheng
    Wang, Xin
    Zhou, Yang
    Ran, Bin
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2022, 37 (15) : 2016 - 2032
  • [3] Dynamic multi-strategy integrated differential evolution algorithm based on reinforcement learning for optimization problems
    Yang, Qingyong
    Chu, Shu-Chuan
    Pan, Jeng-Shyang
    Chou, Jyh-Horng
    Watada, Junzo
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 1845 - 1877
  • [4] Dynamic multi-strategy integrated differential evolution algorithm based on reinforcement learning for optimization problems
    Qingyong Yang
    Shu-Chuan Chu
    Jeng-Shyang Pan
    Jyh-Horng Chou
    Junzo Watada
    Complex & Intelligent Systems, 2024, 10 : 1845 - 1877
  • [5] Multi-strategy multi-objective differential evolutionary algorithm with reinforcement learning
    Han, Yupeng
    Peng, Hu
    Mei, Changrong
    Cao, Lianglin
    Deng, Changshou
    Wang, Hui
    Wu, Zhijian
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [6] Robust Dynamic Bus Control: A Distributional Multi-Agent Reinforcement Learning Approach
    Wang, Jiawei
    Sun, Lijun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4075 - 4088
  • [7] Obtaining Robust Control and Navigation Policies for Multi-robot Navigation via Deep Reinforcement Learning
    Jestel, Christian
    Surmann, Harmtmut
    Stenzel, Jonas
    Urbann, Oliver
    Brehler, Marius
    2021 7TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS (ICARA 2021), 2021, : 48 - 54
  • [8] Robust Optimal Formation Control of Heterogeneous Multi-Agent System via Reinforcement Learning
    Lin, Wei
    Zhao, Wanbing
    Liu, Hao
    IEEE ACCESS, 2020, 8 (08): : 218424 - 218432
  • [9] Robust Deep Reinforcement Learning for Quadcopter Control
    Deshpande, Aditya M.
    Minai, Ali A.
    Kumar, Manish
    IFAC PAPERSONLINE, 2021, 54 (20): : 90 - 95
  • [10] Multi-strategy control to extend the feasibility region for robust model predictive control
    Oh, Tae Hoon
    Kim, Jong Woo
    Son, Sang Hwan
    Jeong, Dong Hwi
    Lee, Jong Min
    JOURNAL OF PROCESS CONTROL, 2022, 116 : 25 - 33