Immanant varieties

被引:0
|
作者
Bolognini, Davide [1 ]
Sentinelli, Paolo [2 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, Italy
[2] Politecn Milan, Dipartimento Matemat, Milan, Italy
关键词
Immanant; Matroid; Symmetric group; One-dimensional characters; Chow group;
D O I
10.1016/j.laa.2023.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce immanant varieties, associated to simple characters of a finite group. They include well-studied classes of varieties, as Segre embeddings, Grassmannians and certain other classes of Chow varieties. For a one-dimensional character chi, we define chi-matroids by a maximality property. For trivial characters, by exploring the combinatorics of incidence stratifications, we provide a set of generators for the Chow vector spaces of the corresponding immanant varieties. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
引用
收藏
页码:164 / 190
页数:27
相关论文
共 50 条
  • [1] Immanant preserving and immanant converting maps
    Coelho, M. Purificacao
    Duffner, M. Antonia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (01) : 177 - 187
  • [2] A note on immanant preservers
    Kuzma B.
    Journal of Mathematical Sciences, 2008, 155 (6) : 872 - 876
  • [3] THE SECOND IMMANANT OF SOME COMBINATORIAL MATRICES
    Bapat, R. B.
    Sivasubramanian, S.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) : 23 - 35
  • [4] PROPERTIES OF IMMANANT WAVEFUNCTION
    CANTU, AA
    MOLECULAR PHYSICS, 1970, 19 (01) : 11 - &
  • [5] Immanant inequalities for Laplacians of trees
    Chan, O
    Lam, TK
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) : 129 - 144
  • [6] Immanant Conversion on Symmetric Matrices
    Purificacao Coelho, M.
    Antonia Duffner, M.
    Guterman, Alexander E.
    SPECIAL MATRICES, 2014, 2 (01): : 1 - 10
  • [7] On the conversion of an immanant into another on symmetric matrices
    Coelho, MP
    Duffner, MA
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (02): : 137 - 145
  • [8] Twisted immanant and matrices with anticommuting entries
    Itoh, Minoru
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (08): : 1637 - 1653
  • [9] AN ALGORITHM FOR THE 2ND IMMANANT
    GRONE, R
    MERRIS, R
    MATHEMATICS OF COMPUTATION, 1984, 43 (168) : 589 - 591
  • [10] IMMANANT INEQUALITIES AND PARTITION NODE DIAGRAMS
    PATE, TH
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 46 : 65 - 80