Graph contextualized self-attention network for software service sequential recommendation

被引:0
|
作者
Fu, Zixuan [1 ]
Wang, Chenghua [1 ]
Xu, Jiajie [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Software Service Recommendation; Self Attention Network; GitHub Repository;
D O I
10.1016/j.future.2023.07.041
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the broad application of software services, an increasing number of developers are turning to social coding sites for constructing their applications or conducting further research. These software services generate spatiotemporal data with numerous unique features. GitHub, being the world's largest code hosting platform, is essential to efficiently provide recommendation services for its users. In order to make accurate recommendations and establish effective user-item and item-item rela-tionships, we propose a Graph Contextualized Self-attention Network for Software Service Sequential Recommendation (GCSAN). This model captures global repository-to-repository relationships based on contextual information and recommends suitable repositories to users. Specifically, we leverage the relationships between repositories in all behavior sequences and graph embedding technique to alleviate the data sparsity problem. Moreover, we employ a self attention mechanism to capture user's repository preferences at different time points, assigning varying weights accordingly. Finally, the experimental results on real-world datasets demonstrate the superior performance of our proposed model compared to benchmark recommendation methods.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:509 / 517
页数:9
相关论文
共 50 条
  • [1] Graph contextualized self-attention network for session-based recommendation
    Xu, Chengfeng
    Zhao, Pengpeng
    Liu, Yanchi
    Sheng, Victor S.
    Xu, Jiajie
    Zhuang, Fuzhen
    Fang, Junhua
    Zhou, Xiaofang
    IJCAI International Joint Conference on Artificial Intelligence, 2019, 2019-August : 3940 - 3946
  • [2] Graph Contextualized Self-Attention Network for Session-based Recommendation
    Xu, Chengfeng
    Zhao, Pengpeng
    Liu, Yanchi
    Sheng, Victor S.
    Xu, Jiajie
    Zhuang, Fuzhen
    Fang, Junhua
    Zhou, Xiaofang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3940 - 3946
  • [3] Variational Self-attention Network for Sequential Recommendation
    Zhao, Jing
    Zhao, Pengpeng
    Zhao, Lei
    Liu, Yanchi
    Sheng, Victor S.
    Zhou, Xiaofang
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 1559 - 1570
  • [4] Self-Attention Based Sequential Recommendation With Graph Convolutional Networks
    Seng, Dewen
    Wang, Jingchang
    Zhang, Xuefeng
    IEEE ACCESS, 2024, 12 : 32780 - 32787
  • [5] Joint Graph Contextualized Network for Sequential Recommendation
    Huang, Ruoran
    Han, Chuanqi
    Cui, Li
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 87 - 100
  • [6] Time interval-Aware graph with self-Attention for sequential recommendation
    Institutes of Physical Science and Information Technology, Anhui University, Hefei
    230601, China
    ACM Int. Conf. Proc. Ser.,
  • [7] HSRec: Hierarchical self-attention incorporating knowledge graph for sequential recommendation
    Yang, Zuoxi
    Dong, Shoubin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3749 - 3760
  • [8] Feature Interaction Dual Self-attention network for sequential recommendation
    Zhu, Yunfeng
    Yao, Shuchun
    Sun, Xun
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [9] CSAN: Contextual Self-Attention Network for User Sequential Recommendation
    Huang, Xiaowen
    Qian, Shengsheng
    Fang, Quan
    Sang, Jitao
    Xu, Changsheng
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 447 - 455
  • [10] Modeling Periodic Pattern with Self-Attention Network for Sequential Recommendation
    Ma, Jun
    Zhao, Pengpeng
    Liu, Yanchi
    Sheng, Victor S.
    Xu, Jiajie
    Zhao, Lei
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 557 - 572