Peptide Self-Assembly Controlled Photoligation of Polymers

被引:12
|
作者
Richardson, Bailey J. [1 ,2 ]
Zhang, Chao [1 ,2 ,3 ]
Rauthe, Pascal [4 ]
Unterreiner, Andreas-Neil [4 ]
Golberg, Dmitri V. [1 ,2 ]
Poad, Berwyck L. J. [1 ,2 ,3 ]
Frisch, Hendrik [1 ,2 ]
机构
[1] Queensland Univ Technol, Sch Chem & Phys, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Ctr Mat Sci, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, Cent Analyt Res Facil, Brisbane, Qld 4000, Australia
[4] Karlsruhe Inst Technol KIT, Inst Phys Chem, D-76131 Karlsruhe, Germany
基金
澳大利亚研究理事会;
关键词
REVERSIBLE 2+2 PHOTOCYCLOADDITION; AMPHIPHILE NANOFIBERS; ENERGY-TRANSFER; MICELLES; AGGREGATION; DNA;
D O I
10.1021/jacs.3c03961
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly efficient chemical ligations that operate in waterundermild conditions are the foundation of bioorthogonal chemistry. However,the toolbox of suitable reactions is limited. Conventional approachesto expand this toolbox aim at altering the inherent reactivity offunctional groups to design new reactions that meet the required benchmarks.Inspired by controlled reaction environments that enzymes provide,we report a fundamentally different approach that makes inefficientreactions highly efficient within defined local environments. Contrastingenzymatically catalyzed reactions, the reactivity controlling self-assembledenvironment is brought about by the ligation targets themselves avoidingthe use of a catalyst. Targeting [2 + 2] photocycloadditions, whichare inefficient at low concentrations and readily quenched by oxygen,short & beta;-sheet encoded peptide sequences are inserted betweena hydrophobic photoreactive styrylpyrene unit and a hydrophilic polymer.In water, electrostatic repulsion of deprotonated amino acid residuesgoverns the formation of small self-assembled structures, which enablea highly efficient photoligation of the polymer, reaching & SIM;90%ligation within 2 min (0.034 mM). Upon protonation at low pH, theself-assembly changes into 1D fibers, altering photophysical propertiesand shutting down the photocycloaddition reaction. Using the reversiblemorphology change, it is possible to switch the photoligation "ON"or "OFF" under constant irradiation simply by varyingthe pH. Importantly, in dimethylformamide, the photoligation reactiondid not occur even at 10-fold higher concentrations (0.34 mM). Theself-assembly into a specific architecture, encoded into the polymerligation target, enables a highly efficient ligation that overcomesthe concentration limitations and high oxygen sensitivity of [2 +2] photocycloadditions.
引用
收藏
页码:15981 / 15989
页数:9
相关论文
共 50 条
  • [1] Peptide Self-Assembly and Peptide-based Polymers for New Bionanomaterials
    Liskamp, Rob M. J.
    BIOPOLYMERS, 2011, 96 (04) : 412 - 412
  • [2] Self-assembly of polymers
    Kunitake, T
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2001, 6 (01) : 1 - 2
  • [3] Phase behavior and self-assembly of stimulus response peptide polymers
    Chilkoti, Ashutosh
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [4] Metallocene polymers: From synthesis to controlled evaporative self-assembly
    Lin, Zhiqun
    Han, Wei
    Tang, Chuanbing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [5] Self-assembly of diphenylalanine peptide with controlled polarization for power generation
    Vu Nguyen
    Zhu, Ren
    Jenkins, Kory
    Yang, Rusen
    NATURE COMMUNICATIONS, 2016, 7
  • [6] Self-assembly of diphenylalanine peptide with controlled polarization for power generation
    Vu Nguyen
    Ren Zhu
    Kory Jenkins
    Rusen Yang
    Nature Communications, 7
  • [7] Controlled self-assembly of macrocyclic peptide into multifunctional photoluminescent nanoparticles
    Dissanayake, Ranga
    Nazeer, Nauman
    Zarei, Zeyaealdin
    Bhayo, Adnan Murad
    Ahmed, Marya
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2025, 114 (02) : 990 - 1001
  • [8] pH-Controlled Hierarchical Self-Assembly of Peptide Amphiphile
    Chen, Yiren
    Gan, Hui Xian
    Tong, Yen Wah
    MACROMOLECULES, 2015, 48 (08) : 2647 - 2653
  • [9] Unprecedented Molecular Architectures by the Controlled Self-Assembly of a β-Peptide Foldamer
    Kwon, Sunbum
    Jeon, Aram
    Yoo, Sung Hyun
    Chung, Im Sik
    Lee, Hee-Seung
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (44) : 8232 - 8236
  • [10] Controlled self-assembly of α-helix-decorated peptide nanostructures
    Choi, Sung-ju
    Jeong, Woo-jin
    Kim, Tae-Hyun
    Lim, Yong-beom
    SOFT MATTER, 2011, 7 (05) : 1675 - 1677