Global Bifurcation from Infinity in Some Nonlinear Sturm-Liouville Problems

被引:0
|
作者
Aliyev, Ziyatkhan S. [1 ,2 ]
Hadiyeva, Sevinj S. [3 ]
Ismayilova, Nurida A. [2 ]
机构
[1] Baku State Univ, Baku 1148, Azerbaijan
[2] Minist Sci & Educ Republ Azerbaijan, Inst Math Mech, Baku 1141, Azerbaijan
[3] Sumgait State Univ, Sumgait 5000, Azerbaijan
关键词
Bifurcation from zero; Bifurcation from infinity; Bifurcation point; Eigenvalue; Global continua; EIGENVALUE PROBLEMS; STEKLOV PROBLEMS; SPECTRAL PARAMETER; EQUATIONS; ZERO;
D O I
10.1007/s40840-023-01490-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the bifurcation of solutions from infinity of Sturm-Liouville eigenvalue problems with a spectral parameter in the boundary condition. These problems are reduced to integro-differential equations to which the global bifurcation theory can be applied. Using this, we show the existence of two families of unbounded continua of solutions to these problems, emanating from bifurcation points and lying in classes of functions with fixed oscillation count in a neighborhood of these bifurcation points.
引用
收藏
页数:14
相关论文
共 50 条