Scalable Time-Domain Compute-in-Memory BNN Engine with 2.06 POPS/W Energy Efficiency for Edge-AI Devices

被引:7
|
作者
Lou, Jie [1 ]
Freye, Florian [1 ]
Lanius, Christian [1 ]
Gemmeke, Tobias [1 ]
机构
[1] Rhein Westfal TH Aachen, Integrated Digital Syst & Circuit Design, Aachen, Germany
关键词
time-domain computing; compute-in-memory; binary neural networks; double-edge operation; MACRO;
D O I
10.1145/3583781.3590220
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time-domain (TD) computing has attracted attention for its high computing efficiency and suitability for applications on energy-constrained edge devices. In this paper, we present a time-domain compute-in-memory (TDCIM) macro for binary neural networks (BNNs) realized by standard as well as custom delay cells. Multiply- and-accumulate (MAC) operations, batch normalization (BN) and binarization (Bin) are all processed in the time-domain, avoiding costly digital domain post-processing. In addition, it supports flexible mapping for different kernel sizes, achieving 100% utilization. Starting from a standard cell-based implementation, we propose two custom cells that provide interesting trade-offs between energy efficiency, area and accuracy. The two proposed custom designs can achieve 1.5 and 2.06 POPS/W energy efficiencies at 0.5V and 0.6V with less cell area while maintaining model test accuracy.
引用
收藏
页码:665 / 670
页数:6
相关论文
共 10 条
  • [1] All-Digital Time-Domain Compute-in-Memory Engine for Binary Neural Networks With 1.05 POPS/W Energy Efficiency
    Lou, Jie
    Lanius, Christian
    Freye, Florian
    Stadtmann, Tim
    Gemmeke, Tobias
    ESSCIRC 2022- IEEE 48TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2022, : 149 - 152
  • [2] An Area and Energy-Efficient SRAM Based Time - Domain Compute-In-Memory Architecture For BNN
    Chakraborty, Subhradip
    Kushwaha, Dinesh
    Bulusu, Anand
    Dasgupta, Sudeb
    2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 184 - 188
  • [3] A 701.7 TOPS/W Compute-in-Memory Processor With Time-Domain Computing for Spiking Neural Network
    Park, Keonhee
    Jeong, Hoichang
    Kim, Seungbin
    Shin, Jeongmin
    Kim, Minseo
    Lee, Kyuho Jason
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2025, 72 (01) : 25 - 35
  • [4] 8-b Precision 8-Mb ReRAM Compute-in-Memory Macro Using Direct-Current-Free Time-Domain Readout Scheme for AI Edge Devices
    Hung, Je-Min
    Wen, Tai-Hao
    Huang, Yen-Hsiang
    Huang, Sheng-Po
    Chang, Fu-Chun
    Su, Chin-, I
    Khwa, Win-San
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chih, Yu-Der
    Chang, Tsung-Yung Jonathan
    Chang, Meng-Fan
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, : 1 - 13
  • [5] An Energy Efficient All-Digital Time-Domain Compute-in-Memory Macro Optimized for Binary Neural Networks
    Lou, Jie
    Freye, Florian
    Lanius, Christian
    Gemmeke, Tobias
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (01) : 287 - 298
  • [6] 15.4 A 22nm 2Mb ReRAM Compute-in-Memory Macro with 121-28TOPS/W for Multibit MAC Computing for Tiny AI Edge Devices
    Xue, Cheng-Xin
    Huang, Tsung-Yuan
    Liu, Je-Syu
    Chang, Ting-Wei
    Kao, Hui-Yao
    Wang, Jing-Hong
    Liu, Ta-Wei
    Wei, Shih-Ying
    Huang, Sheng-Po
    Wei, Wei-Chen
    Chen, Yi-Ren
    Hsu, Tzu-Hsiang
    Chen, Yen-Kai
    Lo, Yun-Chen
    Wen, Tai-Hsing
    Lo, Chung-Chuan
    Liu, Ren-Shun
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Chang, Meng-Fan
    2020 IEEE INTERNATIONAL SOLID- STATE CIRCUITS CONFERENCE (ISSCC), 2020, : 244 - +
  • [7] All-Digital Time-Domain CNN Engine Using Bidirectional Memory Delay Lines for Energy-Efficient Edge Computing
    Sayal, Aseem
    Fathima, Shirin
    Nibhanupudi, S. S. Teja
    Kulkarni, Jaydeep P.
    2019 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2019, 62 : 228 - +
  • [8] A 12.08-TOPS/W All-Digital Time-Domain CNN Engine Using Bi-Directional Memory Delay Lines for Energy Efficient Edge Computing
    Sayal, Aseem
    Nibhanupudi, S. S. Teja
    Fathima, Shirin
    Kulkarni, Jaydeep P.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (01) : 60 - 75
  • [9] A Novel Ferroelectric Tunnel FET-based Time-Domain Content Addressable Memory with High Distance-Metric Linearity and Energy Efficiency for Edge Machine Learning
    Xu, Weikai
    Luo, Jin
    Huang, Qianqian
    Huang, Ru
    2023 SILICON NANOELECTRONICS WORKSHOP, SNW, 2023, : 7 - 8
  • [10] An 8b-Precison 16-Kb FDSOI 8T SRAM CIM macro based on time-domain for energy-efficient edge AI devices
    Zhou, Yongliang
    Wei, Yiming
    Xiong, Tianzhu
    Zhou, Zixuan
    Yang, Zhen
    Lin, Xiao
    Hu, Wei
    Wu, Xiulong
    Peng, Chunyu
    MICROELECTRONICS JOURNAL, 2024, 151