Production of poly(3-hydroxybutyrate)/poly(lactic acid) from industrial wastewater by wild-type Cupriavidus necator H16

被引:4
|
作者
Hernandez-Herreros, Natalia [1 ,2 ]
Rivero-Buceta, Virginia [1 ,2 ]
Pardo, Isabel [1 ,2 ]
Prieto, M. Auxiliadora [1 ,2 ]
机构
[1] Spanish Natl Res Council CIB CSIC, Biol Res Ctr Margarita Salas, Microbial & Plant Biotechnol Dept, Polymer Biotechnol Grp, Madrid, Spain
[2] Spanish Natl Res Council SusPlast CSIC, Interdisciplinary Platform Sustainable Plast Circu, Madrid, Spain
基金
欧盟地平线“2020”;
关键词
Industrial wastewater; Lactic acid; Biopolymer; Polyhydroxyalkanoate; Cupriavidus necator; Proteomics; RALSTONIA-EUTROPHA H16; VOLATILE FATTY-ACIDS; POLYHYDROXYALKANOATE PRODUCTION; STRINGENT RESPONSE; GRANULE FORMATION; POLYLACTIC ACID; LACTATE; BIOSYNTHESIS; ENZYME; PHAS;
D O I
10.1016/j.watres.2023.120892
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The massive production of urban and industrial wastes has created a clear need for alternative waste management processes. One of the more promising strategies is to use waste as raw material for the production of biopolymers such as polyhydroxyalkanoates (PHAs). In this work, a lactate-enriched stream obtained by anaerobic digestion (AD) of wastewater (WW) from a candy production plant was used as a feedstock for PHA production in wild-type Cupriavidus necator H16. Unexpectedly, we observed the accumulation of poly(3hydroxybutyrate)/poly(lactic acid) (P(3HB)/PLA), suggesting that the non-engineered strain already possesses the metabolic potential to produce these polymers of interest. The systematic study of factors, such as incubation time, nitrogen and lactate concentration, influencing the synthesis of P(3HB)/PLA allowed the production of a panel of polymers in a resting cell system with tailored lactic acid (LA) content according to the GC-MS of the biomass. Further biomass extraction suggested the presence of methanol soluble low molecular weight molecules containing LA, while 1 % LA could be detected in the purified polymer fraction. These results suggested that the cells are producing a blend of polymers. A proteomic analysis of C. necator resting cells under P(3HB)/PLA production conditions provides new insights into the latent pathways involved in this process. This study is a proof of concept demonstrating that LA can polymerize in a non-modified organism and paves the way for new metabolic engineering approaches for lactic acid polymer production in the model bacterium C. necator H16.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16
    Kunasundari, Balakrishnan
    Arza, Carlos Rodriquez
    Maurer, Frans H. J.
    Murugaiyah, Vikneswaran
    Kaur, Gurjeet
    Sudesh, Kumar
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 172 : 1 - 6
  • [2] Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16
    Ng, Ko-Sin
    Ooi, Wei-Yang
    Goh, Lay-Koon
    Shenbagarathai, Rajaiah
    Sudesh, Kumar
    POLYMER DEGRADATION AND STABILITY, 2010, 95 (08) : 1365 - 1369
  • [3] Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures
    Lopez-Abelairas, M.
    Garcia-Torreiro, M.
    Lu-Chau, T.
    Lema, J. M.
    Steinbuechel, A.
    BIOCHEMICAL ENGINEERING JOURNAL, 2015, 93 : 250 - 259
  • [4] Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO2
    Soyoung Kim
    Yong Jae Jang
    Gyeongtaek Gong
    Sun-Mi Lee
    Youngsoon Um
    Kyoung Heon Kim
    Ja Kyong Ko
    Microbial Cell Factories, 21
  • [5] Microbial production of poly (3-hydroxybutyrate) (PHB) from rubber seed oil using Cupriavidus necator H16
    Prasad, Reddy D. M.
    Pendyala, Rajashekhar
    Senthilkumar, R.
    Bin Azri, Mohammad Hazwan
    2019 INTERNATIONAL CONFERENCE ON RESOURCES AND ENVIRONMENT SCIENCES, 2019, 398 : CP1 - U4
  • [6] Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO2
    Kim, Soyoung
    Jang, Yong Jae
    Gong, Gyeongtaek
    Lee, Sun-Mi
    Um, Youngsoon
    Kim, Kyoung Heon
    Ko, Ja Kyong
    MICROBIAL CELL FACTORIES, 2022, 21 (01)
  • [7] Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source
    Batcha, Abeed Fatima Mohidin
    Prasad, D. M. Reddy
    Khan, Maksudur R.
    Abdullah, Hamidah
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2014, 37 (05) : 943 - 951
  • [8] Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source
    Abeed Fatima Mohidin Batcha
    D. M. Reddy Prasad
    Maksudur R. Khan
    Hamidah Abdullah
    Bioprocess and Biosystems Engineering, 2014, 37 : 943 - 951
  • [9] Effect of ethanol and hydrogen peroxide on poly(3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16
    Stanislav Obruca
    Ivana Marova
    Marie Stankova
    Ludmila Mravcova
    Zdenek Svoboda
    World Journal of Microbiology and Biotechnology, 2010, 26 : 1261 - 1267
  • [10] Effect of ethanol and hydrogen peroxide on poly(3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16
    Obruca, Stanislav
    Marova, Ivana
    Stankova, Marie
    Mravcova, Ludmila
    Svoboda, Zdenek
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2010, 26 (07): : 1261 - 1267