Development of an Adaptive Artifact Subspace Reconstruction Based on Hebbian/Anti-Hebbian Learning Networks for Enhancing BCI Performance

被引:11
|
作者
Tsai, Bo-Yu [1 ,2 ]
Diddi, Sandeep Vara Sankar [3 ,4 ]
Ko, Li-Wei [5 ,6 ,7 ,8 ,9 ,10 ,11 ]
Wang, Shuu-Jiun [2 ,12 ,13 ]
Chang, Chi-Yuan [14 ]
Jung, Tzyy-Ping [14 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Biomed Engn, Hsinchu 300, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Brain Res Ctr, Hsinchu 300, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Int PhD Program Interdisciplinary Neurosci, Hsinchu 300, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS2, Hsinchu 300, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Inst Bioinformat & Syst Biol, Int PhD Program Interdisciplinary Neurosci, Hsinchu 300, Taiwan
[6] Natl Yang Ming Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS2, Coll Biol Sci & Technol, Hsinchu 300, Taiwan
[7] Natl Yang Ming Chiao Tung Univ, Dept Elect & Elect Engn, Inst Elect & Control Engn, Hsinchu 300, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Coll Elect & Comp Engn, Inst Biomed Engn, Hsinchu 300, Taiwan
[9] Natl Yang Ming Chiao Tung Univ, Coll Elect & Comp Engn, Brain Res Ctr, Hsinchu 300, Taiwan
[10] Kaohsiung Med Univ, Dept Biomed Sci, Kaohsiung 807, Taiwan
[11] Kaohsiung Med Univ, Environm Biol & Drug Dev & Value Creat Res Ctr, Kaohsiung 807, Taiwan
[12] Taipei Vet Gen Hosp, Taipei 11217, Taiwan
[13] Natl Yang Ming Chiao Tung Univ, Sch Med, Taipei 112, Taiwan
[14] Univ Calif San Diego, Swartz Ctr Computat Neurosci, La Jolla, CA 92093 USA
关键词
Artifact removal; artifact subspace reconstruction; brain-computer interface (BCI); electroencephalography; Hebbian/anti-Hebbian neural network; BRAIN-COMPUTER INTERFACES; EEG; REMOVAL; NOISE;
D O I
10.1109/TNNLS.2022.3174528
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain-computer interface (BCI) actively translates the brain signals into executable actions by establishing direct communication between the human brain and external devices. Recording brain activity through electroencephalography (EEG) is generally contaminated with both physiological and nonphysiological artifacts, which significantly hinders the BCI performance. Artifact subspace reconstruction (ASR) is a well-known statistical technique that automatically removes artifact components by determining the rejection threshold based on the initial reference EEG segment in multichannel EEG recordings. In real-world applications, the fixed threshold may limit the efficacy of the artifact correction, especially when the quality of the reference data is poor. This study proposes an adaptive online ASR technique by integrating the Hebbian/anti-Hebbian neural networks into the ASR algorithm, namely, principle subspace projection ASR (PSP-ASR) and principal subspace whitening ASR (PSW-ASR) that segmentwise self-organize the artifact subspace by updating the synaptic weights according to the Hebbian and anti-Hebbian learning rules. The effectiveness of the proposed algorithm is compared to the conventional ASR approaches on benchmark EEG dataset and three BCI frameworks, including steady-state visual evoked potential (SSVEP), rapid serial visual presentation (RSVP), and motor imagery (MI) by evaluating the root-mean-square error (RMSE), the signal-to-noise ratio (SNR), the Pearson correlation, and classification accuracy. The results demonstrated that the PSW-ASR algorithm effectively removed the EEG artifacts and retained the activity-specific brain signals compared to the PSP-ASR, standard ASR (Init-ASR), and moving-window ASR (MW-ASR) methods, thereby enhancing the SSVEP, RSVP, and MI BCI performances. Finally, our empirical results from the PSW-ASR algorithm suggested the choice of an aggressive cutoff range of c = 1-10 for activity-specific BCI applications and a moderate range of c >10 for the benchmark dataset and general BCI applications.
引用
收藏
页码:348 / 361
页数:14
相关论文
共 13 条
  • [1] Hebbian and anti-Hebbian adaptation-induced dynamical states in adaptive networks
    Thamizharasan, S.
    Chandrasekar, V. K.
    Senthilvelan, M.
    Senthilkumar, D., V
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [2] Swarms on the 3-sphere with adaptive synapses: Hebbian and anti-Hebbian learning rule
    Crnkic, Aladin
    Jacimovic, Vladimir
    SYSTEMS & CONTROL LETTERS, 2018, 122 : 32 - 38
  • [3] Receptive field map development by anti-Hebbian learning
    Andrade, MA
    Moran, F
    NEURAL NETWORKS, 1997, 10 (06) : 1037 - 1052
  • [4] A Hebbian/Anti-Hebbian Neural Network for Linear Subspace Learning: A Derivation from Multidimensional Scaling of Streaming Data
    Pehlevan, Cengiz
    Hu, Tao
    Chklovskii, Dmitri B.
    NEURAL COMPUTATION, 2015, 27 (07) : 1461 - 1495
  • [5] ANTI-HEBBIAN LEARNING IN TOPOLOGICALLY CONSTRAINED LINEAR-NETWORKS - A TUTORIAL
    PALMIERI, F
    ZHU, J
    CHANG, CH
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (05): : 748 - 761
  • [6] Towards robust, interpretable neural networks via Hebbian/anti-Hebbian learning: A software framework for training with feature-based costs
    Cekic, Metehan
    Bakiskan, Can
    Madhow, Upamanyu
    SOFTWARE IMPACTS, 2022, 13
  • [7] Adaptive signal processing in mixed-signal VLSI with anti-Hebbian learning
    Figueroa, Miguel
    Matamala, Esteban
    Carvajal, Gonzalo
    Bridges, Seth
    IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, PROCEEDINGS: EMERGING VLSI TECHNOLOGIES AND ARCHITECTURES, 2006, : 133 - +
  • [8] Control of Shunt Custom Power Device Based on Anti-Hebbian Learning Algorithm
    Arya, Sabha Raj
    Singh, Bhim
    Chandra, Ambrish
    Al-Haddad, Kamal
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 1246 - 1251
  • [9] An analysis of the use of Hebbian and Anti-Hebbian spike time dependent plasticity learning functions within the context of recurrent spiking neural networks
    Carnell, Andrew
    NEUROCOMPUTING, 2009, 72 (4-6) : 685 - 692
  • [10] Learning-Based Anti-Hebbian Algorithm for Control of Distribution Static Compensator
    Arya, Sabha Raj
    Singh, Bhim
    Chandra, Ambrish
    Al-Haddad, Kamal
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (11) : 6004 - 6012