The Influence of Regiochemistry on the Performance of Organic Mixed Ionic and Electronic Conductors

被引:12
|
作者
Halaksa, Roman [1 ]
Kim, Ji Hwan [2 ]
Thorley, Karl J. [3 ]
Gilhooly-Finn, Peter A. [1 ]
Ahn, Hyungju [4 ]
Savva, Achilleas [5 ]
Yoon, Myung-Han [2 ]
Nielsen, Christian B. [1 ]
机构
[1] Queen Mary Univ London, Dept Chem, Mile End Rd, London E1 4NS, England
[2] Gwangju Inst Sci & Technol GIST, Sch Mat Sci & Engn, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[3] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA
[4] POSTECH, Pohang Accelerator Lab, Pohang 37673, South Korea
[5] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
基金
欧盟地平线“2020”; 英国医学研究理事会; 新加坡国家研究基金会;
关键词
Mixed Ionic-Electronic Conductors; Organic Bioelectronics; Organic Electrochemical Transistors; Regiochemistry; Semiconducting Polymers; HOLE MOBILITIES; TRANSISTORS; TRANSITION; TRANSPORT;
D O I
10.1002/anie.202304390
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a mu C* product of 267 F V-1 cm(-1) s(-1).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Organic mixed ionic–electronic conductors
    Bryan D. Paulsen
    Klas Tybrandt
    Eleni Stavrinidou
    Jonathan Rivnay
    Nature Materials, 2020, 19 : 13 - 26
  • [2] On the fundamentals of organic mixed ionic/electronic conductors
    Fabiano, Simone
    Flagg, Lucas
    Hidalgo Castillo, Tania C.
    Inal, Sahika
    Kaake, Loren G.
    Kayser, Laure V.
    Keene, Scott T.
    Ludwigs, Sabine
    Muller, Christian
    Savoie, Brett M.
    Luessem, Bjoern
    Lutkenhaus, Jodie L.
    Matta, Micaela
    Meli, Dilara
    Patel, Shrayesh N.
    Paulsen, Bryan D.
    Rivnay, Jonathan
    Surgailis, Jokubas
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (42) : 14527 - 14539
  • [3] Organic mixed ionic-electronic conductors
    Paulsen, Bryan D.
    Tybrandt, Klas
    Stavrinidou, Eleni
    Rivnay, Jonathan
    NATURE MATERIALS, 2020, 19 (01) : 13 - 26
  • [4] Organic mixed ionic-electronic conductors progress at pace
    不详
    NATURE MATERIALS, 2024, 23 (05) : 577 - 577
  • [5] Mixed Ionic-Electronic Conduction, a Multifunctional Property in Organic Conductors
    Tan, Siew Ting Melissa
    Gumyusenge, Aristide
    Quill, Tyler James
    LeCroy, Garrett Swain
    Bonacchini, Giorgio Ernesto
    Denti, Ilaria
    Salleo, Alberto
    ADVANCED MATERIALS, 2022, 34 (21)
  • [6] The dynamic nature of electrostatic disorder in organic mixed ionic and electronic conductors
    Burke, Colm
    Landi, Alessandro
    Troisi, Alessandro
    MATERIALS HORIZONS, 2024, 11 (21) : 5313 - 5319
  • [7] Ionic Solvent Shell Drives Electroactuation in Organic Mixed Ionic-Electronic Conductors
    Bonafe, Filippo
    Decataldo, Francesco
    Cramer, Tobias
    Fraboni, Beatrice
    ADVANCED SCIENCE, 2024, 11 (18)
  • [8] Polymeric mixed ionic electronic conductors
    Riess, I
    SOLID STATE IONICS, 2000, 136 : 1119 - 1130
  • [9] Mixed Ionic-Electronic Conductors Based on PEDOT:PolyDADMA and Organic Ionic Plastic Crystals
    Del Olmo, Rafael
    Casado, Nerea
    Olmedo-Martinez, Jorge L.
    Wang, Xiaoen
    Forsyth, Maria
    POLYMERS, 2020, 12 (09) : 1 - 18
  • [10] Organic Synaptic Diodes Based on Polymeric Mixed Ionic-Electronic Conductors
    Garisch, Fabian
    Ligorio, Giovanni
    Klein, Patrick
    Forster, Michael
    Scherf, Ullrich
    List-Kratochvil, Emil J. W.
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (02)