Using machine learning for crop yield prediction in the past or the future

被引:27
|
作者
Morales, Alejandro [1 ]
Villalobos, Francisco J. [2 ,3 ]
机构
[1] Wageningen Univ & Res, Ctr Crop Syst Anal, Plant Sci Grp, Wageningen, Netherlands
[2] Consejo Super Invest Cient IAS CSIC, Inst Agr Sostenible, Cordoba, Spain
[3] Univ Cordoba, Dept Agron, ETSIAM, Cordoba, Spain
来源
关键词
machine learning; crop simulation model; wheat; sunflower; DSSAT; neural network; ARTIFICIAL NEURAL-NETWORKS; WHEAT; MODEL;
D O I
10.3389/fpls.2023.1128388
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The use of ML in agronomy has been increasing exponentially since the start of the century, including data-driven predictions of crop yields from farm-level information on soil, climate and management. However, little is known about the effect of data partitioning schemes on the actual performance of the models, in special when they are built for yield forecast. In this study, we explore the effect of the choice of predictive algorithm, amount of data, and data partitioning strategies on predictive performance, using synthetic datasets from biophysical crop models. We simulated sunflower and wheat data using OilcropSun and Ceres-Wheat from DSSAT for the period 2001-2020 in 5 areas of Spain. Simulations were performed in farms differing in soil depth and management. The data set of farm simulated yields was analyzed with different algorithms (regularized linear models, random forest, artificial neural networks) as a function of seasonal weather, management, and soil. The analysis was performed with Keras for neural networks and R packages for all other algorithms. Data partitioning for training and testing was performed with ordered data (i.e., older data for training, newest data for testing) in order to compare the different algorithms in their ability to predict yields in the future by extrapolating from past data. The Random Forest algorithm had a better performance (Root Mean Square Error 35-38%) than artificial neural networks (37-141%) and regularized linear models (64-65%) and was easier to execute. However, even the best models showed a limited advantage over the predictions of a sensible baseline (average yield of the farm in the training set) which showed RMSE of 42%. Errors in seasonal weather forecasting were not taken into account, so real-world performance is expected to be even closer to the baseline. Application of AI algorithms for yield prediction should always include a comparison with the best guess to evaluate if the additional cost of data required for the model compensates for the increase in predictive power. Random partitioning of data for training and validation should be avoided in models for yield forecasting. Crop models validated for the region and cultivars of interest may be used before actual data collection to establish the potential advantage as illustrated in this study.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Crop Yield Prediction Using Machine Learning Algorithms
    Nigam, Aruvansh
    Garg, Saksham
    Agrawal, Archit
    Agrawal, Parul
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 125 - 130
  • [2] Crop Yield Prediction using Machine Learning Techniques
    Medar, Ramesh
    Rajpurohit, Vijay S.
    Shweta
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [3] Crop yield prediction using machine learning techniques
    Iniyan, S.
    Varma, V. Akhil
    Naidu, Ch Teja
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 175
  • [4] Crop Yield Prediction Using Ensemble Machine Learning Techniques
    P. Kuppan
    V. Vishwa Priya
    SN Computer Science, 5 (8)
  • [5] Crop Yield Prediction Using Improved Extreme Learning Machine
    Vashisht, Swati
    Kumar, Praveen
    Trivedi, Munesh Chandra
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2023, 54 (01) : 1 - 21
  • [6] Machine Learning as a Tool for Crop Yield Prediction
    P. K. Kutsenogiy
    V. K. Kalichkin
    A. L. Pakul
    S. P. Kutsenogiy
    Russian Agricultural Sciences, 2021, 47 (2) : 188 - 192
  • [7] CROP YIELD PREDICTION BASED ON INDIAN AGRICULTURE USING MACHINE LEARNING
    Aravind, T.
    Prieyaa, K. R. Yoghaa
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (04) : 401 - 408
  • [8] Crop Yield Prediction Using Machine Learning Approaches on a Wide Spectrum
    Joshua, S. Vinson
    Priyadharson, A. Selwin Mich
    Kannadasan, Raju
    Khan, Arfat Ahmad
    Lawanont, Worawat
    Khan, Faizan Ahmed
    Rehman, Ateeq Ur
    Ali, Muhammad Junaid
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5663 - 5679
  • [9] Crop yield prediction using machine learning: A systematic literature review
    van Klompenburg, Thomas
    Kassahun, Ayalew
    Catal, Cagatay
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 177
  • [10] Agricultural Crop Yield Prediction for Indian Farmers Using Machine Learning
    Narawade, Vaibhav
    Chaudhari, Akash
    Mohammad, Muntazir Alam
    Dubey, Tanmay
    Jadhav, Bhumika
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 75 - 86