DARBOUX TRANSFORMATIONS FOR A GENERALIZATION OF THE NONLINEAR SCHRO?DINGER EQUATION AND ITS REDUCTIONS

被引:0
|
作者
Shen, Jing [1 ]
Geng, Xianguo [2 ]
Xue, Bo [2 ]
机构
[1] Henan Univ Technol, Sch Sci, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
a generalization of the nonlinear Schro?dinger equation; Darboux transformation; explicit solutions; SOLITONS; SYSTEMS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we introduce a 2 x 2 matrix spectral problem with two potentials to derive a generalization of the nonlinear Schro center dot dinger system that can be reduced to four important integrable equations: a generalization of the nonlinear Schro center dot dinger equation, a combined nonlinear Schro center dot dinger and derivative nonlinear Sch-ro center dot dinger equation, and a combined nonlinear Schro center dot dinger and Chen-Lee-Liu equation, a combined nonlinear Schro center dot dinger and Gerdjikov-Ivanov equation. With the help of a gauge transformation between the corresponding Lax pairs, Darboux transformations for the generalization of the nonlinear Schro center dot dinger system and its reductions are con-structed, by which explicit solutions for the generalization of the nonlinear Schro center dot dinger system and its reduction can be engendered from their known solutions. As an appli-cation, we obtain various explicit solutions of the four integrable equations, including one-soliton, two-soliton, periodic solutions and others.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On Darboux transformations for the derivative nonlinear Schrödinger equation
    Jonathan J. C. Nimmo
    Halis Yilmaz
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 278 - 293
  • [2] Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation
    Xianguo Geng
    Yanyan Lv
    Nonlinear Dynamics, 2012, 69 : 1621 - 1630
  • [3] Darboux and generalized Darboux transformations for the fractional integrable derivative nonlinear Schrödinger equation
    Zhang, Sheng
    Zhang, Yuying
    Xu, Bo
    Li, Xinyu
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [4] Darboux transformations for the generalized Schrödinger equation
    A. A. Suzko
    G. Giorgadze
    Physics of Atomic Nuclei, 2007, 70 : 607 - 610
  • [5] A nonlinear Schro?dinger equation including the parabolic law and its dark solitons
    Hosseini, K.
    Hincal, E.
    Mirzazadeh, M.
    Salahshour, S.
    Obi, O. A.
    Rabiei, F.
    OPTIK, 2023, 273
  • [6] Supersymmetry and Darboux transformations for the generalized Schrödinger equation
    A. A. Suzko
    A. Schulze-Halberg
    E. P. Velicheva
    Physics of Atomic Nuclei, 2009, 72 : 858 - 865
  • [7] The solvability of the optimal control problem for a nonlinear Schro•dinger equation
    Aksoy, Nigar Yildirim
    Celik, Ercan
    Dadas, Muhammed Emin
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2023, 13 (02): : 269 - 276
  • [8] The Discrete Nonlinear Schrödinger Equation and its Lie Symmetry Reductions
    R Hernández Heredero
    D Levi
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 77 - 94
  • [9] The interaction of soliton solutions for a variable coefficient nonlinear Schro•dinger equation
    Yin, XiaoJun
    Liu, QuanSheng
    Narenmandula
    Bai, ShuTing
    OPTIK, 2021, 247
  • [10] Parametric effects on paraxial nonlinear Schro•dinger equation in Kerr media
    Arafat, S. M. Yiasir
    Khan, Kamruzzaman
    Islam, S. M. Rayhanul
    Rahman, M. M.
    CHINESE JOURNAL OF PHYSICS, 2023, 83 : 361 - 378