Cross-Domain Open Set Fault Diagnosis Based on Weighted Domain Adaptation with Double Classifiers

被引:5
|
作者
Wang, Huaqing [1 ]
Xu, Zhitao [1 ]
Tong, Xingwei [1 ]
Song, Liuyang [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Mech Elect Engn, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Key Lab Hlth Monitoring & Selfrecovery High End Me, Beijing 100029, Peoples R China
基金
北京市自然科学基金;
关键词
fault diagnosis; open set domain adaptation; transfer learning; rotating machinery; deep learning;
D O I
10.3390/s23042137
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The application of transfer learning in fault diagnosis has been developed in recent years. It can use existing data to solve the problem of fault recognition under different working conditions. Due to the complexity of the equipment and the openness of the working environment in industrial production, the status of the equipment is changeable, and the collected signals can have new fault classes. Therefore, the open set recognition ability of the transfer learning method is an urgent research direction. The existing transfer learning model can have a severe negative transfer problem when solving the open set problem, resulting in the aliasing of samples in the feature space and the inability to separate the unknown classes. To solve this problem, we propose a Weighted Domain Adaptation with Double Classifiers (WDADC) method. Specifically, WDADC designs the weighting module based on Jensen-Shannon divergence, which can evaluate the similarity between each sample in the target domain and each class in the source domain. Based on this similarity, a weighted loss is constructed to promote the positive transfer between shared classes in the two domains to realize the recognition of shared classes and the separation of unknown classes. In addition, the structure of double classifiers in WDADC can mitigate the overfitting of the model by maximizing the discrepancy, which helps extract the domain-invariant and class-separable features of the samples when the discrepancy between the two domains is large. The model's performance is verified in several fault datasets of rotating machinery. The results show that the method is effective in open set fault diagnosis and superior to the common domain adaptation methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Adversarial Domain Adaptation With Dual Auxiliary Classifiers for Cross-Domain Open-Set Intelligent Fault Diagnosis
    Wang, Bo
    Zhang, Meng
    Xu, Hao
    Wang, Chao
    Yang, Wenglong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [2] Open-set federated adversarial domain adaptation based cross-domain fault diagnosis
    Xu, Shu
    Ma, Jian
    Song, Dengwei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [3] Cross-Domain Open-Set Machinery Fault Diagnosis Based on Adversarial Network With Multiple Auxiliary Classifiers
    Zhu, Jun
    Huang, Cheng-Geng
    Shen, Changqing
    Shen, Yongjun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (11) : 8077 - 8086
  • [4] Open set domain adaptation method based on adversarial dual classifiers for fault diagnosis
    She B.
    Liang W.
    Qin F.
    Dong H.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (07): : 325 - 334
  • [5] Double-level discriminative domain adaptation network for cross-domain fault diagnosis
    Li, Yufeng
    Xu, Xinghan
    Hu, Lei
    Sun, Kai
    Han, Min
    APPLIED INTELLIGENCE, 2025, 55 (05)
  • [6] Dual adversarial network for cross-domain open set fault diagnosis
    Zhao, Chao
    Shen, Weiming
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 221
  • [7] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [8] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [9] Weighted domain separation based open set fault diagnosis
    Zhang, Xingwu
    Zhao, Yu
    Yu, Xiaolei
    Ma, Rui
    Wang, Chenxi
    Chen, Xuefeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 239
  • [10] Integrating intrinsic information: A novel open set domain adaptation network for cross-domain fault diagnosis with multiple unknown faults
    Zhang, Yuteng
    Zhang, Hongliang
    Chen, Bin
    Zheng, Jinde
    Pan, Haiyang
    KNOWLEDGE-BASED SYSTEMS, 2024, 299