Marshall-Olkin type;
Generalized Chen (BGCh) distribution;
The maximum likelihood and Bayesian methods;
MCMC;
WEIBULL;
FIT;
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
A new model of bivariate distributions is presented in this paper. The model introduced here is of the Marshall-Olkin type. The joint survival function, the joint probability density function and the joint hazard function of the bivariate generalized Chen (BGCh) distribution are obtained. The maximum likelihood and Bayesian methods are used to estimate the unknown parameters of the BGCh distribution. Numerical methods are required to calculate the desired estimates.
机构:
Univ Las Palmas Gran Canaria, Dept Quantitat Methods Econ, Las Palmas Gran Canaria, Spain
Univ Las Palmas Gran Canaria, TiDES Inst, Las Palmas Gran Canaria, SpainUniv Las Palmas Gran Canaria, Dept Quantitat Methods Econ, Las Palmas Gran Canaria, Spain
Gomez-Deniz, E.
Ghitany, M. E.
论文数: 0引用数: 0
h-index: 0
机构:
Kuwait Univ, Dept Stat & Operat Res, Fac Sci, Kuwait, KuwaitUniv Las Palmas Gran Canaria, Dept Quantitat Methods Econ, Las Palmas Gran Canaria, Spain
Ghitany, M. E.
Gupta, Ramesh C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maine, Dept Math & Stat, Orono, ME USAUniv Las Palmas Gran Canaria, Dept Quantitat Methods Econ, Las Palmas Gran Canaria, Spain
机构:
Univ Montenegro, Fac Sci & Math, Cetinjski Put 2, Podgorica 81000, MontenegroUniv Montenegro, Fac Sci & Math, Cetinjski Put 2, Podgorica 81000, Montenegro
Popovic, Bozidar V.
Genc, Ali I.
论文数: 0引用数: 0
h-index: 0
机构:
Cukurova Univ, Dept Stat, Adana, TurkiyeUniv Montenegro, Fac Sci & Math, Cetinjski Put 2, Podgorica 81000, Montenegro
Genc, Ali I.
Ristic, Miroslav M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nis, Dept Math, Fac Sci & Math, Nish, SerbiaUniv Montenegro, Fac Sci & Math, Cetinjski Put 2, Podgorica 81000, Montenegro