Integrating Retrieval-Augmented Generation with Large Language Models in Nephrology: Advancing Practical Applications

被引:19
|
作者
Miao, Jing [1 ]
Thongprayoon, Charat [1 ]
Suppadungsuk, Supawadee [1 ,2 ]
Valencia, Oscar A. Garcia [1 ]
Cheungpasitporn, Wisit [1 ]
机构
[1] Dept Med, Div Nephrol & Hypertens, Mayo Clin, Rochester, MN 55905 USA
[2] Mahidol Univ, Ramathibodi Hosp, Chakri Naruebodindra Med Inst, Fac Med, Samut Prakan 10540, Thailand
来源
MEDICINA-LITHUANIA | 2024年 / 60卷 / 03期
关键词
large language models (LLMs); nephrology; chronic kidney disease; artificial intelligence; retrieval-augmented generation (RAG); CHATGPT; PERFORMANCE; GPT-4; AI;
D O I
10.3390/medicina60030445
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The integration of large language models (LLMs) into healthcare, particularly in nephrology, represents a significant advancement in applying advanced technology to patient care, medical research, and education. These advanced models have progressed from simple text processors to tools capable of deep language understanding, offering innovative ways to handle health-related data, thus improving medical practice efficiency and effectiveness. A significant challenge in medical applications of LLMs is their imperfect accuracy and/or tendency to produce hallucinations-outputs that are factually incorrect or irrelevant. This issue is particularly critical in healthcare, where precision is essential, as inaccuracies can undermine the reliability of these models in crucial decision-making processes. To overcome these challenges, various strategies have been developed. One such strategy is prompt engineering, like the chain-of-thought approach, which directs LLMs towards more accurate responses by breaking down the problem into intermediate steps or reasoning sequences. Another one is the retrieval-augmented generation (RAG) strategy, which helps address hallucinations by integrating external data, enhancing output accuracy and relevance. Hence, RAG is favored for tasks requiring up-to-date, comprehensive information, such as in clinical decision making or educational applications. In this article, we showcase the creation of a specialized ChatGPT model integrated with a RAG system, tailored to align with the KDIGO 2023 guidelines for chronic kidney disease. This example demonstrates its potential in providing specialized, accurate medical advice, marking a step towards more reliable and efficient nephrology practices.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Integrating Graph Retrieval-Augmented Generation With Large Language Models for Supplier Discovery
    Li, Yunqing
    Ko, Hyunwoong
    Ameri, Farhad
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2025, 25 (02)
  • [2] Benchmarking Large Language Models in Retrieval-Augmented Generation
    Chen, Jiawei
    Lin, Hongyu
    Han, Xianpei
    Sun, Le
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 16, 2024, : 17754 - 17762
  • [3] Advancing Cyber Incident Timeline Analysis Through Retrieval-Augmented Generation and Large Language Models
    Loumachi, Fatma Yasmine
    Ghanem, Mohamed Chahine
    Ferrag, Mohamed Amine
    COMPUTERS, 2025, 14 (02)
  • [4] Optimized interaction with Large Language Models: A practical guide to Prompt Engineering and Retrieval-Augmented Generation
    Fink, Anna
    Rau, Alexander
    Kotter, Elmar
    Bamberg, Fabian
    Russe, Maximilian Frederik
    RADIOLOGIE, 2025,
  • [5] Integrating Small Language Models with Retrieval-Augmented Generation in Computing Education: Key Takeaways, Setup, and Practical Insights
    Yu, Zezhu
    Liu, Suqing
    Denny, Paul
    Bergen, Andreas
    Liut, Michael
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 2, 2025, : 1302 - 1308
  • [6] Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy
    Shaol, Zhihong
    Gong, Yeyun
    Shen, Yelong
    Huang, Minlie
    Duane, Nan
    Chen, Weizhu
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 9248 - 9274
  • [7] Integrating Small Language Models with Retrieval-Augmented Generation in Computing Education: Key Takeaways, Setup, and Practical Insights
    Yu, Zezhu
    Liu, Suqing
    Denny, Paul
    Bergen, Andreas
    Liut, Michael
    PROCEEDINGS OF THE 56TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE TS 2025, VOL 1, 2025, : 1302 - 1308
  • [8] Query Rewriting for Retrieval-Augmented Large Language Models
    Ma, Xinbei
    Gong, Yeyun
    He, Pengcheng
    Zhao, Hai
    Duan, Nan
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 5303 - 5315
  • [9] TrojanRAG: Retrieval-Augmented Generation Can Be Backdoor Driver in Large Language Models
    Shanghai Jiao Tong University, China
    arXiv,
  • [10] Adaptive Control of Retrieval-Augmented Generation for Large Language Models Through Reflective Tags
    Yao, Chengyuan
    Fujita, Satoshi
    ELECTRONICS, 2024, 13 (23):