OpenFL-XAI: Federated learning of explainable artificial intelligence models in Python']Python

被引:4
|
作者
Daole, Mattia [1 ]
Schiavo, Alessio [1 ,2 ]
Barcena, Jose Luis Corcuera
Ducange, Pietro [1 ]
Marcelloni, Francesco [1 ]
Renda, Alessandro [1 ]
机构
[1] Univ Pisa, Dept Informat Engn, Largo Lucio Lazzarino 1, I-56122 Pisa, Italy
[2] LogObject AG, Ambassador House Thurgauerstr 101 A, CH-8152 Opfikon, Switzerland
关键词
Federated learning; Explainable AI; Rule-based systems; Linguistic fuzzy models; SYSTEMS;
D O I
10.1016/j.softx.2023.101505
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Artificial Intelligence (AI) systems play a significant role in manifold decision-making processes in our daily lives, making trustworthiness of AI more and more crucial for its widespread acceptance. Among others, privacy and explainability are considered key requirements for enabling trust in AI. Building on these needs, we propose a software for Federated Learning (FL) of Rule-Based Systems (RBSs): on one hand FL prioritizes user data privacy during collaborative model training. On the other hand, RBSs are deemed as interpretable-by-design models and ensure high transparency in the decisionmaking process. The proposed software, developed as an extension to the Intel (R) OpenFL open-source framework, offers a viable solution for developing AI applications balancing accuracy, privacy, and interpretability. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Artificial Intelligence with Python']Python
    Sa'adah, Aminatus
    TECHNOMETRICS, 2023, 65 (03) : 451 - 452
  • [2] eXplainable Artificial Intelligence (XAI) in aging clock models
    Kalyakulina, Alena
    Yusipov, Igor
    Moskalev, Alexey
    Franceschi, Claudio
    Ivanchenko, Mikhail
    AGEING RESEARCH REVIEWS, 2024, 93
  • [3] secml: Secure and explainable machine learning in Python']Python
    Pintor, Maura
    Demetrio, Luca
    Sotgiu, Angelo
    Melis, Marco
    Demontis, Ambra
    Biggio, Battista
    SOFTWAREX, 2022, 18
  • [4] Explainable Artificial Intelligence (XAI) Approach for Reinforcement Learning Systems
    Peixoto, Maria J. P.
    Azim, Akramul
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 971 - 978
  • [5] Explainable Artificial Intelligence (XAI) in Insurance
    Owens, Emer
    Sheehan, Barry
    Mullins, Martin
    Cunneen, Martin
    Ressel, Juliane
    Castignani, German
    RISKS, 2022, 10 (12)
  • [6] Explainable Artificial Intelligence (XAI) in auditing
    Zhang, Chanyuan
    Cho, Soohyun
    Vasarhelyi, Miklos
    INTERNATIONAL JOURNAL OF ACCOUNTING INFORMATION SYSTEMS, 2022, 46
  • [7] XAI-Explainable artificial intelligence
    Gunning, David
    Stefik, Mark
    Choi, Jaesik
    Miller, Timothy
    Stumpf, Simone
    Yang, Guang-Zhong
    SCIENCE ROBOTICS, 2019, 4 (37)
  • [8] Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI)
    Aslam, Nida
    Khan, Irfan Ullah
    Mirza, Samiha
    AlOwayed, Alanoud
    Anis, Fatima M.
    Aljuaid, Reef M.
    Baageel, Reham
    SUSTAINABILITY, 2022, 14 (12)
  • [9] A Survey on Explainable Artificial Intelligence (XAI) Techniques for Visualizing Deep Learning Models in Medical Imaging
    Bhati, Deepshikha
    Neha, Fnu
    Amiruzzaman, Md
    JOURNAL OF IMAGING, 2024, 10 (10)
  • [10] Explainable artificial intelligence (XAI): How to make image analysis deep learning models transparent
    Song, Haekang
    Kim, Sungho
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 1595 - 1598