An Expandable Yield Prediction Framework Using Explainable Artificial Intelligence for Semiconductor Manufacturing

被引:6
|
作者
Lee, Youjin [1 ,2 ]
Roh, Yonghan [1 ,3 ]
机构
[1] Sungkyunkwan Univ, Dept Semicond & Display Engn, Suwon 16419, South Korea
[2] Samsung Elect Co Ltd, Semicond R&D Ctr, Hwaseong 18448, South Korea
[3] Sungkyunkwan Univ, Coll Informat & Commun Engn, Suwon 16419, South Korea
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 04期
关键词
semiconductor manufacturing; yield prediction; XAI; SHAP value method; SELECTION; SYSTEM; MODEL;
D O I
10.3390/app13042660
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Enormous amounts of data are generated and analyzed in the latest semiconductor industry. Established yield prediction studies have dealt with one type of data or a dataset from one procedure. However, semiconductor device fabrication comprises hundreds of processes, and various factors affect device yields. This challenge is addressed in this study by using an expandable input data-based framework to include divergent factors in the prediction and by adapting explainable artificial intelligence (XAI), which utilizes model interpretation to modify fabrication conditions. After preprocessing the data, the procedure of optimizing and comparing several machine learning models is followed to select the best performing model for the dataset, which is a random forest (RF) regression with a root mean square error (RMSE) value of 0.648. The prediction results enhance production management, and the explanations of the model deepen the understanding of yield-related factors with Shapley additive explanation (SHAP) values. This work provides evidence with an empirical case study of device production data. The framework improves prediction accuracy, and the relationships between yield and features are illustrated with the SHAP value. The proposed approach can potentially analyze expandable fields of fabrication conditions to interpret multifaceted semiconductor manufacturing.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing
    Senoner, Julian
    Netland, Torbjorn
    Feuerriegel, Stefan
    MANAGEMENT SCIENCE, 2022, 68 (08) : 5704 - 5723
  • [2] Explainable Artificial Intelligence for Cotton Yield Prediction With Multisource Data
    Celik, Mehmet Furkan
    Isik, Mustafa Serkan
    Taskin, Gulsen
    Erten, Esra
    Camps-Valls, Gustau
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [3] An explainable artificial intelligence framework for risk prediction of COPD in smokers
    Xuchun Wang
    Yuchao Qiao
    Yu Cui
    Hao Ren
    Ying Zhao
    Liqin Linghu
    Jiahui Ren
    Zhiyang Zhao
    Limin Chen
    Lixia Qiu
    BMC Public Health, 23
  • [4] An explainable artificial intelligence framework for risk prediction of COPD in smokers
    Wang, Xuchun
    Qiao, Yuchao
    Cui, Yu
    Ren, Hao
    Zhao, Ying
    Linghu, Liqin
    Ren, Jiahui
    Zhao, Zhiyang
    Chen, Limin
    Qiu, Lixia
    BMC PUBLIC HEALTH, 2023, 23 (01)
  • [5] Introducing Explainable Artificial Intelligence to Property Prediction in Metal Additive Manufacturing
    Maitra, Varad
    Arrasmith, Colleen
    Shi, Jing
    MANUFACTURING LETTERS, 2024, 41 : 1125 - 1135
  • [6] An Explainable Artificial Intelligence Framework for the Deterioration Risk Prediction of Hepatitis Patients
    Junfeng Peng
    Kaiqiang Zou
    Mi Zhou
    Yi Teng
    Xiongyong Zhu
    Feifei Zhang
    Jun Xu
    Journal of Medical Systems, 2021, 45
  • [7] An Explainable Artificial Intelligence Framework for the Deterioration Risk Prediction of Hepatitis Patients
    Peng, Junfeng
    Zou, Kaiqiang
    Zhou, Mi
    Teng, Yi
    Zhu, Xiongyong
    Zhang, Feifei
    Xu, Jun
    JOURNAL OF MEDICAL SYSTEMS, 2021, 45 (05)
  • [8] A Deep Diagnostic Framework Using Explainable Artificial Intelligence and Clustering
    Thunold, Havard Horgen
    Riegler, Michael A.
    Yazidi, Anis
    Hammer, Hugo L.
    Isomoto, Hajime
    Marquering, Henk A.
    DIAGNOSTICS, 2023, 13 (22)
  • [9] Explainable Artificial Intelligence for Prediction of Diabetes using Stacking Classifier
    Devi, Aruna B.
    Karthik, N.
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [10] Explainable Artificial Intelligence Based Framework for Non-Communicable Diseases Prediction
    Davagdorj, Khishigsuren
    Bae, Jang-Whan
    Pham, Van-Huy
    Theera-Umpon, Nipon
    Ryu, Keun Ho
    IEEE ACCESS, 2021, 9 : 123672 - 123688