Spatiotemporal-Aware Privacy-Preserving Task Matching in Mobile Crowdsensing

被引:12
|
作者
Peng, Tao [1 ]
Zhong, Wentao [1 ]
Wang, Guojun [1 ]
Zhang, Shaobo [2 ]
Luo, Entao [3 ]
Wang, Tian [4 ,5 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[3] Hunan Univ Sci & Engn, Sch Informat Engn, Yongzhou 425199, Peoples R China
[4] Beijing Normal Univ BNU Zhuhai, BNU UIC Inst Artificial Intelligence & Future Netw, BNU HKBU United Int Coll Zhuhai, Zhuhai 519087, Peoples R China
[5] Beijing Normal Univ BNU Zhuhai, BNU HKBU United Int Coll, Guangdong Key Lab AI & Multimodal Data Proc, Zhuhai 519087, Peoples R China
关键词
Mobile crowdsensing (MCS); privacy preserving; secure computing; task matching; ALLOCATION;
D O I
10.1109/JIOT.2023.3292284
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Task matching is widely used for participant selection in mobile crowdsensing (MCS). However, accurate task matching relies on collecting a large amount of user information, which has the risk of privacy leakage. Existing privacy-preserving task matching methods have the disadvantages of low matching efficiency and coarse matching granularity, and are difficult to apply to MCS because of higher real-time requirements. In this article, we propose a spatiotemporal-aware privacy-preserving task matching scheme, achieving efficient and fine-grained matching while protecting privacy between users and task publishers. Specifically, the time matching score (TMS) and location matching score (LMS) between users and tasks are defined for the spatiotemporal requirement of MCS. In addition, a lightweight protocol called SCP (secure computing protocol) is constructed based on Shamir secret sharing and Carmichael theorem for securely calculating TMS and LMS and matching attribute values by size and range. The correctness and security of our scheme are proved by detailed theoretical analysis, and the experimental result shows that the computational overhead of our proposed scheme is only 10% of that in the scheme we compared with, while the difference in communication overhead is less than 200 KB.
引用
收藏
页码:2394 / 2406
页数:13
相关论文
共 50 条
  • [1] Personalized Privacy-Preserving Task Allocation for Mobile Crowdsensing
    Wang, Zhibo
    Hu, Jiahui
    Lv, Ruizhao
    Wei, Jian
    Wang, Qian
    Yang, Dejun
    Qi, Hairong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2019, 18 (06) : 1330 - 1341
  • [2] On Cooperative Obfuscation for Privacy-Preserving Task Recommendation in Mobile CrowdSensing
    Bassem, Christine
    2021 17TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB 2021), 2021, : 90 - 95
  • [3] iTAM: Bilateral Privacy-Preserving Task Assignment for Mobile Crowdsensing
    Zhao, Bowen
    Tang, Shaohua
    Liu, Ximeng
    Zhang, Xinglin
    Chen, Wei-Neng
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (12) : 3351 - 3366
  • [4] Privacy-preserving Spatiotemporal Matching
    Sun, Jingchao
    Zhang, Rui
    Zhang, Yanchao
    2013 PROCEEDINGS IEEE INFOCOM, 2013, : 800 - 808
  • [5] Privacy-Preserving Task Allocation for Edge Computing Enhanced Mobile Crowdsensing
    Hu, Yujia
    Shen, Hang
    Bai, Guangwei
    Wang, Tianjing
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2018, PT IV, 2018, 11337 : 431 - 446
  • [6] Privacy-Preserving Incentive Mechanisms for Mobile Crowdsensing
    Zhang, Xinglin
    Liang, Lingyu
    Luo, Chengwen
    Cheng, Long
    IEEE PERVASIVE COMPUTING, 2018, 17 (03) : 47 - 57
  • [7] Privacy-Preserving Incentive Mechanism for Mobile Crowdsensing
    Wan, Tao
    Yue, Shixin
    Liao, Weichuan
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [8] Mobile Crowdsensing Scheme with Strong Privacy-Preserving
    Shi R.
    Feng H.-M.
    Yang Y.
    Yuan F.
    Liu B.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2021, 44 (05): : 114 - 120
  • [9] PACE: Privacy-Preserving and Quality-Aware Incentive Mechanism for Mobile Crowdsensing
    Zhao, Bowen
    Tang, Shaohua
    Liu, Ximeng
    Zhang, Xinglin
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (05) : 1924 - 1939
  • [10] Efficient Privacy-preserving Aggregation for Mobile Crowdsensing
    Huai, Mengdi
    Huang, Liusheng
    Sun, Yu-e
    Yang, Wei
    PROCEEDINGS 2015 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING BDCLOUD 2015, 2015, : 275 - 280