Best proximity points for proximal Gornicki mappings and applications to variational inequality problems

被引:0
|
作者
Dhivya, P. [1 ]
Diwakaran, D. [1 ]
Selvapriya, P. [1 ]
机构
[1] Vellore Inst Technol, Dept Math, Chennai 600127, India
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
关键词
fixed points; best proximity points; Gornicki mapping; enriched contraction; partial metric space; variational inequality; METRIC-SPACES; FIXED-POINTS; THEOREMS; CONTRACTIONS; CONVERGENCE; EXTENSIONS; EXISTENCE;
D O I
10.3934/math.2024287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a large class of mappings called proximal Gornicki mappings in metric spaces, which includes Gornicki mappings, enriched Kannan mappings, enriched Chatterjea mappings, and enriched mappings. We prove the existence of the best proximity points in metric spaces and partial metric spaces. Moreover, we utilize appropriate examples to illustrate our results, and we verify the convergence behavior. As an application of our result, we prove the existence and uniqueness of a solution for the variational inequality problems. The obtained results generalize the existing results in the literature.
引用
收藏
页码:5886 / 5904
页数:19
相关论文
共 50 条
  • [1] Best proximity points for α-ψ-proximal contractive type mappings and applications
    Jleli, Mohamed
    Samet, Bessem
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (08): : 977 - 995
  • [2] φ-Best proximity point theorems and applications to variational inequality problems
    Isik, Huseyin
    Sezen, M. Sangurlu
    Vetro, Calogero
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) : 3177 - 3189
  • [3] Best proximity points for generalized α-ϕ-Geraghty proximal contraction mappings and its applications
    Hamzehnejadi J.
    Lashkaripour R.
    Fixed Point Theory and Applications, 2016 (1)
  • [4] ON (φ, φ)-BEST PROXIMITY POINTS FOR PROXIMAL TYPE CONTRACTION MAPPINGS
    Ali, Muhammad Usman
    Ionescu, Cristiana
    Stanciu, Monica
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (01): : 15 - 26
  • [5] Generalized Proximal ψ-Contraction Mappings and Best Proximity Points
    Sanhan, Winate
    Mongkolkeha, Chirasak
    Kumam, Poom
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [6] On (φ, )-best proximity points for proximal type contraction mappings
    Ali, Muhammad Usman
    Ionescu, Cristiana
    Stanciu, Monica
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (01): : 15 - 26
  • [7] Common Best proximity Points for Weakly Proximal Increasing Mappings
    Pragadeeswarar, V.
    THAI JOURNAL OF MATHEMATICS, 2019, 17 : 163 - 180
  • [8] Best Proximity Points for Generalized α-ψ-Proximal Contractive Type Mappings
    Jleli, Mohamed
    Karapinar, Erdal
    Samet, Bessem
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [9] Best proximity points for Geraghty's proximal contraction mappings
    Mongkolkeha, Chirasak
    Cho, Yeol Je
    Kumam, Poom
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [10] Best proximity points for Geraghty’s proximal contraction mappings
    Chirasak Mongkolkeha
    Yeol Je Cho
    Poom Kumam
    Fixed Point Theory and Applications, 2013